DOI QR코드

DOI QR Code

SOLVABILITY OF NONLINEAR ELLIPTIC TYPE EQUATION WITH TWO UNRELATED NON STANDARD GROWTHS

  • Sert, Ugur (Faculty of Science Department of Mathematics Hacettepe University) ;
  • Soltanov, Kamal (Faculty of Science and Literature Department of Mathematics Igdir University)
  • Received : 2017.11.01
  • Accepted : 2018.05.11
  • Published : 2018.11.01

Abstract

In this paper, we study the solvability of the nonlinear Dirichlet problem with sum of the operators of independent non standard growths $$-div\({\mid}{\nabla}u{\mid}^{p_1(x)-2}{\nabla}u\)-\sum\limits^n_{i=1}D_i\({\mid}u{\mid}^{p_0(x)-2}D_iu\)+c(x,u)=h(x),\;{\in}{\Omega}$$ in a bounded domain ${\Omega}{\subset}{\mathbb{R}}^n$. Here, one of the operators in the sum is monotone and the other is weakly compact. We obtain sufficient conditions and show the existence of weak solutions of the considered problem by using monotonicity and compactness methods together.

Keywords

References

  1. E. Acerbi and G. Mingione, Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal. 164 (2002), no. 3, 213-259. https://doi.org/10.1007/s00205-002-0208-7
  2. R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
  3. S. N. Antontsev and J. F. Rodrigues, On stationary thermo-rheological viscous flows, Ann. Univ. Ferrara Sez. VII Sci. Mat. 52 (2006), no. 1, 19-36.
  4. S. N. Antontsev and S. I. Shmarev, A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions, Nonlinear Anal. 60 (2005), no. 3, 515-545. https://doi.org/10.1016/j.na.2004.09.026
  5. S. N. Antontsev and S. I. Shmarev, On the localization of solutions of elliptic equations with nonhomogeneous anisotropic degeneration, Siberian Math. J. 46 (2005), no. 5, 765-782; translated from Sibirsk. Mat. Zh. 46 (2005), no. 5, 963-984. https://doi.org/10.1007/s11202-005-0076-0
  6. S. N. Antontsev and S. I. Shmarev, Elliptic equations and systems with nonstandard growth conditions: existence, uniqueness and localization properties of solutions, Nonlinear Anal. 65 (2006), no. 4, 728-761. https://doi.org/10.1016/j.na.2005.09.035
  7. Y. Chen, S. Levine, and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (2006), no. 4, 1383-1406. https://doi.org/10.1137/050624522
  8. L. Diening, Theoretical and numerical results for electrorheological fluids. Ph.D. Thesis, 2002.
  9. L. Diening, P. Harjulehto, P. Hasto, and M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, 2017, Springer, Heidelberg, 2011.
  10. X. Fan, J. Shen, and D. Zhao, Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega)$, J. Math. Anal. Appl. 262 (2001), no. 2, 749-760. https://doi.org/10.1006/jmaa.2001.7618
  11. X. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$, J. Math. Anal. Appl. 263 (2001), no. 2, 424-446. https://doi.org/10.1006/jmaa.2000.7617
  12. O. Kovacik and J. Rakosnik, On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czechoslovak Math. J. 41 (1991), 592-618.
  13. J.-L. Lions, Quelques methodes de resolution des problemes aux limites non lineaires, Dunod, 1969.
  14. G. de Marsily, Quantitative Hydrogeology. Groundwater Hydrology for Engineers. Academic Press, London, 1986.
  15. J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics, 1034, Springer-Verlag, Berlin, 1983.
  16. I. P. Natanson, Theory of Functions of a Real Variable, Moscow-Leningrad, 1950.
  17. V. Radulescu and D. Repovs, Partial differential equations with variable exponents, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2015.
  18. K. Rajagopal and M. Ruzicka, Mathematical modeling of electro-rheological fluids, Contin. Mech. Thermodyn. 13 (2001), 59-78. https://doi.org/10.1007/s001610100034
  19. M. Ruzicka, Electrorheological fluids: modeling and mathematical theory, Lecture Notes in Mathematics, 1748, Springer-Verlag, Berlin, 2000.
  20. U. Sert and K. Soltanov, On solvability of a class of nonlinear elliptic type equation with variable exponent, J. Appl. Anal. Comput. 7 (2017), no. 3, 1139-1160.
  21. K. N. Soltanov, Solvability of nonlinear equations with operators in the form of the sum of a pseudomonotone and a weakly compact operator, Russian Acad. Sci. Dokl. Math. 45 (1992), no. 3, 676-681 (1993); translated from Dokl. Akad. Nauk 324 (1992), no. 5, 944-948.
  22. K. N. Soltanov, Some imbedding theorems and nonlinear differential equations, Trans. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. 19 (1999), no. 5, Math. Mech., 125-146 (2000).
  23. K. N. Soltanov, Some nonlinear equations of the nonstable flltration type and embedding theo-rems, Nonlinear Anal. 65 (2006), no. 11, 2103-2134. https://doi.org/10.1016/j.na.2005.11.053
  24. K. N. Soltanov and J. Sprekels, Nonlinear equations in non-reflexive Banach spaces and strongly nonlinear differential equations, Adv. Math. Sci. Appl. 9 (1999), no. 2, 939-972.
  25. E. Zeidler, Nonlinear functional analysis and its applications. II/B, translated from the German by the author and Leo F. Boron, Springer-Verlag, New York, 1990.
  26. V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR. Izv. 29 (1987), 33-36. https://doi.org/10.1070/IM1987v029n01ABEH000958
  27. V. V. Zhikov, On some variational problems, Russian J. Math. Phys. 5 (1997), no. 1, 105-116 (1998).
  28. V. V. Zhikov, On the technique for passing to the limit in nonlinear elliptic equations, Funct. Anal. Appl. 43 (2009), no. 2, 96-112; translated from Funktsional. Anal. i Prilozhen. 43 (2009), no. 2, 19-38.