• Title/Summary/Keyword: Waypoint driving

Search Result 8, Processing Time 0.02 seconds

A Path Generation Algorithm for Obstacle Avoidance in Waypoint Navigation of Unmanned Ground Vehicle (무인자동차의 경로점 주행 시 장애물 회피를 위한 경로생성 알고리즘)

  • Im, Jun-Hyuck;You, Seung-Hwan;Jee, Gyu-In;Lee, Dal-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.8
    • /
    • pp.843-850
    • /
    • 2011
  • In this paper, an effective path generation algorithm for obstacle avoidance producing small amount of steering action as possible is proposed. The proposed path generation algorithm can reduce unnecessary steering because of the small lateral changes in generated waypoints when UGV (Unmanned Ground Vehicle) encounters obstacles during its waypoint navigation. To verify this, the proposed algorithm and $A^*$ algorithm are analyzed through the simulation. The proposed algorithm shows good performance in terms of lateral changes in the generated waypoint, steering changes of the vehicle while driving and execution speed of the algorithm. Especially, due to the fast execution speed of the algorithm, the obstacles that encounter suddenly in front of the vehicle within short range can be avoided. This algorithm consider the waypoint navigation only. Therefore, in certain situations, the algorithm may generate the wrong path. In this case, a general path generation algorithm like $A^*$ is used instead. However, these special cases happen very rare during the vehicle waypoint navigation, so the proposed algorithm can be applied to most of the waypoint navigation for the unmanned ground vehicle.

Path Planning for Autonomous Navigation of a Driverless Ground Vehicle Based on Waypoints (무인운전차량의 자율주행을 위한 경로점 기반 경로계획)

  • Song, Gwang-Yul;Lee, Joon-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.2
    • /
    • pp.211-217
    • /
    • 2014
  • This paper addresses an algorithm of path planning for autonomous driving of a ground vehicle in waypoint navigation. The proposed algorithm is flexible in utilization under a large GPS positioning error and generates collision-free multiple paths while pursuing minimum traveling time. An optimal path reduces inefficient steering by minimizing lateral changes in generated waypoints along a path. Simulation results compare the proposed algorithm with the A* algorithm by manipulation of the steering wheel and traveling time, and show that the proposed algorithm realizes real-time obstacle avoidance by quick processing of path generation, and minimum time traveling by producing paths with small lateral changes while overcoming the very irregular positioning error from the GPS.

Development of Autonomous Driving Electric Vehicle for Logistics with a Robotic Arm (로봇팔을 지닌 물류용 자율주행 전기차 플랫폼 개발)

  • Eui-Jung Jung;Sung Ho Park;Kwang Woo Jeon;Hyunseok Shin;Yunyong Choi
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.1
    • /
    • pp.93-98
    • /
    • 2023
  • In this paper, the development of an autonomous electric vehicle for logistics with a robotic arm is introduced. The manual driving electric vehicle was converted into an electric vehicle platform capable of autonomous driving. For autonomous driving, an encoder is installed on the driving wheels, and an electronic power steering system is applied for automatic steering. The electric vehicle is equipped with a lidar sensor, a depth camera, and an ultrasonic sensor to recognize the surrounding environment, create a map, and recognize the vehicle location. The odometry was calculated using the bicycle motion model, and the map was created using the SLAM algorithm. To estimate the location of the platform based on the generated map, AMCL algorithm using Lidar was applied. A user interface was developed to create and modify a waypoint in order to move a predetermined place according to the logistics process. An A-star-based global path was generated to move to the destination, and a DWA-based local path was generated to trace the global path. The autonomous electric vehicle developed in this paper was tested and its utility was verified in a warehouse.

Development of a ROS-Based Autonomous Driving Robot for Underground Mines and Its Waypoint Navigation Experiments (ROS 기반의 지하광산용 자율주행 로봇 개발과 경유지 주행 실험)

  • Kim, Heonmoo;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.32 no.3
    • /
    • pp.231-242
    • /
    • 2022
  • In this study, we developed a robot operating system (ROS)-based autonomous driving robot that estimates the robot's position in underground mines and drives and returns through multiple waypoints. Autonomous driving robots utilize SLAM (Simultaneous Localization And Mapping) technology to generate global maps of driving routes in advance. Thereafter, the shape of the wall measured through the LiDAR sensor and the global map are matched, and the data are fused through the AMCL (Adaptive Monte Carlo Localization) technique to correct the robot's position. In addition, it recognizes and avoids obstacles ahead through the LiDAR sensor. Using the developed autonomous driving robot, experiments were conducted on indoor experimental sites that simulated the underground mine site. As a result, it was confirmed that the autonomous driving robot sequentially drives through the multiple waypoints, avoids obstacles, and returns stably.

Implementation of an Autonomous Driving System for the Segye AI Robot Car Race Competition (세계 AI 로봇 카레이스 대회를 위한 자율 주행 시스템 구현)

  • Choi, Jung Hyun;Lim, Ye Eun;Park, Jong Hoon;Jeong, Hyeon Soo;Byun, Seung Jae;Sagong, Ui Hun;Park, Jeong Hyun;Kim, Chang Hyun;Lee, Jae Chan;Kim, Do Hyeong;Hwang, Myun Joong
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.198-208
    • /
    • 2022
  • In this paper, an autonomous driving system is implemented for the Segye AI Robot Race Competition that multiple vehicles drive simultaneously. By utilizing the ERP42-racing platform, RTK-GPS, and LiDAR sensors provided in the competition, we propose an autonomous driving system that can drive safely and quickly in a road environment with multiple vehicles. This system consists of a recognition, judgement, and control parts. In the recognition stage, vehicle localization and obstacle detection through waypoint-based LiDAR ROI were performed. In the judgement stage, target velocity setting and obstacle avoidance judgement are determined in consideration of the straight/curved section and the distance between the vehicle and the neighboring vehicle. In the control stage, adaptive cruise longitudinal velocity control based on safe distance and lateral velocity control based on pure-pursuit are performed. To overcome the limited experimental environment, simulation and partial actual experiments were conducted together to develop and verify the proposed algorithms. After that, we participated in the Segye AI Robot Race Competition and performed autonomous driving racing with verified algorithms.

Development of a Self-Driving Service Robot for Monitoring Violations of Quarantine Rules (방역수칙 위반 감시를 위한 자율주행 서비스 로봇 개발)

  • Lee, In-kyu;Lee, Yun-jae;Cho, Young-jun;Kang, Jeong-seok;Lee, Don-gil;Yoo, Hong-seok
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.323-324
    • /
    • 2022
  • 본 논문에서는 사람의 개입 없이 실내 환경에서 마스크 미 착용자를 스스로 발견한 후 방역수칙위반 사실에 대한 경고와 함께 마스크 착용을 권고하는 인공지능 기반의 자율주행 서비스 로봇을 개발한다. 제안한 시스템에서 로봇은 동시적 위치 추적 지도 작성 기법인 SLAM(Simultaneous Localization and Mapping)기술을 이용하여 지도를 작성한 후 사용자가 제공한 웨이포인트(Waypoint)를 기반으로 자율주행한다. 또한, YOLO(You Only Look Once) 알고리즘을 이용한 실시간 객체 인식 기술을 활용하여 보행자의 마스크 착용 여부를 판단한다. 실험을 통해 사전에 작성된 지도에 지정된 웨이포인트를 따라 로봇이 자율주행하는 것을 확인하였다. 또한, 충전소로 이동할 경우, 영상 처리 기법을 활용하여 충전소에 부착된 표식에 근접하도록 이동하여 충전이 진행됨을 확인하였다.

  • PDF

Implementation of Autonomous Mobile Wheeled Robot for Path Correction through Deep Learning Object Recognition (딥러닝 객체인식을 통한 경로보정 자율 주행 로봇의 구현)

  • Lee, Hyeong-il;Kim, Jin-myeong;Lee, Jai-weun
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.12
    • /
    • pp.164-172
    • /
    • 2019
  • In this paper, we implement a wheeled mobile robot that accurately and autonomously finds the optimal route from the starting point to the destination point based on computer vision in a complex indoor environment. We get a number of waypoints from the starting point to get the best route to the target through deep reinforcement learning. However, in the case of autonomous driving, the majority of cases do not reach their destination accurately due to external factors such as surface curvature and foreign objects. Therefore, we propose an algorithm to deepen the waypoints and destinations included in the planned route and then correct the route through the waypoint recognition while driving to reach the planned destination. We built an autonomous wheeled mobile robot controlled by Arduino and equipped with Raspberry Pi and Pycamera and tested the planned route in the indoor environment using the proposed algorithm through real-time linkage with the server in the OSX environment.

A Study on the Introduction and Application of Core Technologies of Smart Motor-Graders for Automated Road Construction (도로 시공 자동화를 위한 스마트 모터 그레이더의 구성 기술 소개 및 적용에 관한 연구)

  • Park, Hyune-Jun;Lee, Sang-Min;Song, Chang-Heon;Cho, Jung-Woo;Oh, Joo-Young
    • Tunnel and Underground Space
    • /
    • v.32 no.5
    • /
    • pp.298-311
    • /
    • 2022
  • Some problems, such as aging workers, a decreased population due to a low birth rate, and shortage of skilled workers, are rising in construction sites. Therefore research for smart construction technology that can be improved for productivity, safety, and quality has been recently developed with government support by replacing traditional construction technology with advanced digital technology. In particular, the motor grader that mainly performs road surface flattening is a construction machine that requires the application of automation technology for repetitive construction. It is predicted that the construction period will be shortened if the construction automation technology such as trajectory tracking, automation work, and remote control technology is applied. In this study, we introduce the hardware and software architecture of the smart motor grader to apply unmanned and automation technology and then analyze the traditional earthwork method of the motor grader. We suggested the application plans for the path pattern and blade control method of the smart motor grader based on this. In addition, we verified the performance of waypoint-based path-following depending on scenarios and the blade control's performance through tests.