• 제목/요약/키워드: Waves and current

검색결과 623건 처리시간 0.035초

Mergers and Acquisitions as Vital Instruments of Corporate Strategy: Current and Historical Perspective

  • Sheikh, M. Jibran;Ahmed, Mah-a-Mobeen;Arshad, Qudsia;Shakeel, Wajid
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제2권1호
    • /
    • pp.15-21
    • /
    • 2015
  • In this paper our main focus is to provide insight into the history of M&A's for this purpose we have analysed the different waves of M&A. We have analysed these waves in context of available literature and fact and figures. During the study we realised that almost all of the waves of M&A's ended because of financial crises, although impact and severity of that crises may differ. We analysed the impact of current crises on M&A in global context and in order to establish how companies have and in post crises era i.e. after crises of 2007 onwards how the companies have changed their corporate strategies to accommodate M&A's. We have also analysed which factors fuelled M&A's in past and were these factors present in post crises era M&A activities. By first quarter of 2011 the many firms saw new growth opportunities in M&A activities seemed to rebound as large companies used M&A's as part of their corporate strategy but this was cut short by events like US debt ceiling, down grade of USA's credit ratings along with fears about Eurozone's financial health and their impact on future prospects of M&A's would they continue to prosper or would they be weighed down by these events.

Role of Radio Frequency and Microwaves in Magnetic Fusion Plasma Research

  • Park, Hyeon K.
    • Journal of electromagnetic engineering and science
    • /
    • 제17권4호
    • /
    • pp.169-177
    • /
    • 2017
  • The role of electromagnetic (EM) waves in magnetic fusion plasma-ranging from radio frequency (RF) to microwaves-has been extremely important, and understanding of EM wave propagation and related technology in this field has significantly advanced magnetic fusion plasma research. Auxiliary heating and current drive systems, aided by various forms of high-power RF and microwave sources, have contributed to achieving the required steady-state operation of plasmas with high temperatures (i.e., up to approximately 10 keV; 1 eV=10000 K) that are suitable for future fusion reactors. Here, various resonance values and cut-off characteristics of wave propagation in plasmas with a nonuniform magnetic field are used to optimize the efficiency of heating and current drive systems. In diagnostic applications, passive emissions and active sources in this frequency range are used to measure plasma parameters and dynamics; in particular, measurements of electron cyclotron emissions (ECEs) provide profile information regarding electron temperature. Recent developments in state-of-the-art 2D microwave imaging systems that measure fluctuations in electron temperature and density are largely based on ECE. The scattering process, phase delays, reflection/diffraction, and the polarization of actively launched EM waves provide us with the physics of magnetohydrodynamic instabilities and transport physics.

Fault Discrimination of Power Transformers using Vibration Signal Analysis (진동 신호 분석을 이용한 전력용 변압기의 고장 판별)

  • Yoon, Yong-Han;You, Chi-Hyoung;Kim, Jae-Chul;Chung, Chan-Soo;Lee, Jung-Jin
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • 제48권1호
    • /
    • pp.1-7
    • /
    • 1999
  • In power transformers, vibration signals can occur at winding and core due to the change of current, voltage, and temperature and the deformation of winding and core. The deformation of winding and core occurs electromagnetic force induced by fault current in power systems. There firem the changes of vibration signals can be very different in normal or fault states of power transformers. We edtect and analyze the changes of vibration signals and use them as a tool for fault diagnosis of power transformers. This paper presents fault discriminating polliblility using the changes of fundamental waves and higher harmonics in power transformers. We showed the fault discriminating functions that are made at each case ; normal state and fault state. These functions are tested by the detected vibration signals, and we showed that the proposed method can discriminate the state of power transformers.

  • PDF

Dynamic Response Analysis of Offshore Guyed Tower Subjected to Strong Earthquake under Moderate Random Waves (지진과 파랑하중을 동시에 받는 해양 가이드 타워의 비정상 동적 응답해석)

  • Ryu, Chung Son;Yun, Chung Bang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제13권4호
    • /
    • pp.65-75
    • /
    • 1993
  • Presented is a method for nonstationary response analysis of an offshore guyed tower subjected to strong earthquake motions under moderate random waves and current loadings. By taking the time varying envelope function and the auto-correlation function of the ground acceleration in terms of complex exponential functions, an analytical procedure is developed for computing time varying variances of the tower response. The stationary responses due to small random waves are obtained by using frequency domain method, and the results are combined with the nonstationary results due to earthquakes. Finally, the expected maximum responses are estimated. Through the example analyses, the nonstationary method developed in this study is verified, and the contributions of the earthquake, wave and current loadings to the total maximum response are investigated.

  • PDF

Bottom Friction of Combined Wave-Current Flow (천해파와 해류의 해저면 마찰력)

  • 유동훈;김인호
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • 제13권2호
    • /
    • pp.177-188
    • /
    • 2001
  • The paper presents the method to estimate the bottom shear stress driven by waves and current on rough turbulent flow. Parameter adjusting technique is suggested for the computation of bed shear stress driven by uni-directional flow, and the value ofpararneter is determined by comparing the computational results against Bijker's laboratory data. For the computation of combined flow bottom shear stress, two methods are presented; one is the modified Bijker approach (BYO Model) and the other is the modified Fredsoe approach (FY Model), both of which are refined by the present writers. BYO model is again refined in the computation of maximum shear stress, and the final version is tested against Bijkcr's laboratory data.

  • PDF

Characteristics of High-Speed Railway Tunnel Entry Compression Wave (고속철도 터널입구에서 형성되는 압축파의 특성에 관한 연구)

  • Kim, Heuy-Dong;Kim, Tae-Ho;Lee, Jong-Su;Kim, Dong-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제23권2호
    • /
    • pp.234-242
    • /
    • 1999
  • Flow phenomena such as the pressure transients Inside a high-speed railway tunnel and the Impulsive waves at the exit of the tunnel are closely associated with the characteristics of the entry compression wave, which is generated by a train entering the tunnel. Tunnel entrance hood may be an effective means for alleviating the Impulsive waves and pressure transients. The objective of the current work is to explore the effects of the train nose shape and the entrance hood on the characteristics of the entry compression wave. Numerical calculations using the method of characteristics were applied to one-dimensional, unsteady, compressible flow field with respect to high-speed railway/tunnel systems. Two types of the entrance hoods and various train nose shapes were employed to reveal their influences on the entry compression wave for a wide range of train speeds. The results showed that the entry compression wave length increases as the train nose becomes longer and the train speed becomes lower. The entry compression wave length in the tunnel with hood becomes longer than that of no hood. Maximum pressure gradient in the compression wavefront reduces by the entrance hood. The results of the current work provide useful data for the design of tunnel entrance hood.

Wave Transformation with Wave-Current Interaction in Shallow Water (천해역(淺海域)에서 파(波)와 흐름의 상호작용(相互作用)에 의한 파랑변형(波浪變形))

  • Lee, Jong Kyu;Lee, Jong In
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제11권2호
    • /
    • pp.77-89
    • /
    • 1991
  • Based on Boussinesq equation, the parabolic approximation equation is used to analyse the propagation of shallow water waves with currents over slowly varying depth. Rip currents (jet-like) occur mainly in shallow waters where the Ursell parameter significatly exceeds the range of application of Stokes wave theory. We employ the nonlinear parabolic approximation equation which is valid for waves of large Ursell parameters and small scale currents. Two types of currents are considered; relatively strong and relatively weak currents. The wave propagating over rip currents on a sloping bottom experiences a shoaling due to the variations of depth and current velocity as well as refraction and diffraction due to the vorticity of currents. Numerical analyses for a nonlinear theory are valid before the breaking point.

  • PDF

Estimation of Fault Location on Transmission Lines using Current Phasor (전류 페이저를 이용한 송전선로 고장점 추정 알고리즘)

  • Yeo, Sang-Min;Kim, Chul-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제58권11호
    • /
    • pp.2095-2100
    • /
    • 2009
  • Since most of the Extra High Voltage (EHV) transmission lines are untransposed and multi-circuits, errors are occurred inevitably because of the unbalanced impedances of the lines and so on. Therefore, a distance relaying algorithm applicable to the untransposed multi-circuits transmission lines needs to be developed. The proposed algorithm of fault location estimation in the paper uses the fundamental phasor to reduce the effects of the harmonics. This algorithm also analyzes the second-order difference of the phasor to calculate the traveling times of waves generated by faults. The traveling time of the waves generated by faults is derived from the second-order difference of the phasor. Finally, the distance from the relaying point to the faults is estimated using the traveling times. To analyze the performance of the algorithm, a power system with the EHV untransposed double-circuit transmission lines are modeled and simulated under various fault conditions such as several fault types, fault locations, fault inception angles and fault resistances. The results of the simulations show that the proposed algorithm has the capability to estimate the fault locations quickly and accurately.

Analysis of Wave Parametric Characteristics using WAVEWATCH-III Model and Observed Buoy Data (파랑모델과 부이 자료를 이용한 파랑인자 특성 분석)

  • 장유순;서장원;김태희;윤용훈
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • 제8권3호
    • /
    • pp.274-284
    • /
    • 2003
  • The analysis of wave parametric characteristics in sea regions in the vicinity of Korean Peninsula have been carried out using the third generation wave model, WAVEWATCH-III (Tolman, 1999) and four observed buoy data of Korea Meteorological Administration (KMA). Significant wave height increases about 2-3 hours later after the increase of wind speed. Maximum correlation coefficient between two parameters appears in Donghae buoy data, which is at off-shore region. When land breeze occurs, it can be found that the correlation coefficient decreases. Time differences between wind speeds and wave heights correspond to significant tidal periods at all of the buoy locations except for Donghae buoy. After verifying the WAVEWATCH-III model results by the comparing with observed buoy data, we have carried out numerical experiments near the Kuroshio current and East Sea areas, and then reconfirmed that when there exist an opposite strong current in the propagation direction of the waves or wind direction, wave height and length get higher and shorter, respectively and vice versa. It has been shown that these modulations of wave parameters are considerable when wind speed is week or mean current is relatively strong, and corresponding values have been represented.

구동회로에 따른 박형 초음파모터의 동작특성

  • Jeong, Seong-Su;Jeong, Hyeon-Ho;Park, Min-Ho;Park, Tae-Gon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.109-109
    • /
    • 2009
  • This paper represented driving characteristic of a thin-type ultrasonic motor by fabricating and utilizing two kinds of drivers which could generate sinusoidal wave, square wave, respectively. A thin brass plate was used as a cross shaped vibrator and sixteen ceramic plates were attached on upper and bottom side of the brass plate. From the thin stator, elliptical displacements of the four contact tips were obtained. Speed, torque, and current were measured by applying sinusoidal waves through driving equipment such as function generator, power amplifier: to measure characteristic of the motor. As a result, the speed and the torque changed linearly at either driving frequency of 88.6 ~ 87.6[kHz] or voltage of 24~36[V]. Two-drivers which generate sinusoidal waves and square waves were designed respectively, and then were compared through some experiments in order to be put to practical use. In conclusion, the drivers had similar characteristic of speed-torque at similar frequency and voltage. It was able to control the motor linearly by using the driver generating square wave among two-drivers. Besides, it also was possible to make the drivers smaller.

  • PDF