• Title/Summary/Keyword: Wavelet regression

Search Result 49, Processing Time 0.024 seconds

Application of neural networks and an adapted wavelet packet for generating artificial ground motion

  • Asadi, A.;Fadavi, M.;Bagheri, A.;Ghodrati Amiri, G.
    • Structural Engineering and Mechanics
    • /
    • v.37 no.6
    • /
    • pp.575-592
    • /
    • 2011
  • For seismic resistant design of critical structures, a dynamic analysis, either response spectrum or time history is frequently required. Owing to the lack of recorded data and the randomness of earthquake ground motion that may be experienced by structure in the future, usually it is difficult to obtain recorded data which fit the requirements (site type, epicenteral distance, etc.) well. Therefore, the artificial seismic records are widely used in seismic designs, verification of seismic capacity and seismic assessment of structures. The purpose of this paper is to develop a numerical method using Artificial Neural Network (ANN) and wavelet packet transform in best basis method which is presented for the decomposition of artificial earthquake records consistent with any arbitrarily specified target response spectra requirements. The ground motion has been modeled as a non-stationary process using wavelet packet. This study shows that the procedure using ANN-based models and wavelet packets in best-basis method are applicable to generate artificial earthquakes compatible with any response spectra. Several numerical examples are given to verify the developed model.

A Model to Predict the Strength of Watermark in DWT-Based Image Watermarking

  • Moon, Ho-Seok;Park, Suk-Bong;Bae, Hyun-Wung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.2
    • /
    • pp.475-485
    • /
    • 2008
  • One of main issues in watermarking is to resolve the strength of watermark for solving the problem of trade-off between fidelity and robustness of watermarking. In the previous research, the strength of watermark has been resolved fixed value generally without considering local image characteristics such as image brightness, contrast, and edge. This paper proposes a new model to predict the strength of watermark considering local image characteristics such as image brightness, contrast, and edge for digital wavelet transform(DWT)-based image watermarking. For the study, psychological experiment was fulfilled to measure the human image perception and regression analysis showed the proposed model was statistically significant at the level of ${\alpha}\;=\;0.01$. Also the model is practically validated on fidelity and robustness of watermarking.

  • PDF

The Prediction of Fatigue Damage for Pressure Vessel Materials using Shear Horizontal Ultrasonic Wave (SH(shear horizontal) 초음파를 이용한 압력용기용 재료의 피로손상 예측)

  • Kang, Yong-Ho;Chung, Yong-Keun;Song, Jung-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.6
    • /
    • pp.90-96
    • /
    • 2009
  • Ultrasonic method using SH(shear horizontal) wave has been developed to determine the surface damage in fatigued material. Fatigue damages based on propagation energy were analyzed by multi-regression analysis in interrupted fatigue test specimen including CrMoV and 12Cr alloy steel. From the test results, as the fatigue damage increased the propagation time of the launched waves increased and amplitude of wavelet decreased. Also, analysis for the waveform modulation showed a reliable estimation, with confidence limit of 97% for 12Cr steel and 95% for CrMoV steel, respectively. Therefore, It is thought that SH ultrasonic wave technique can be applied to determine fatigue damage of in-service component nondestructively.

Estimation of Discharge for the Amazon River Branches with Wavelet Analysis

  • Katabira, Kyoichiro;Ogawa, Susumu;Sakurai, Takako;Takagi, Mikio
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.346-348
    • /
    • 2003
  • In this study, we attempted to estimate the discharge of the Amazon River branches from JERS-1/SAR images, which are independent of the weather. We visualized some traces of the Amazon River branches, transformed river shapes into a one-dimensional signal, and calculated the characteristics of the river shapes such as the meandering wavelength and the amplitude with Fourier and wavelet analysis. Then, we related the characteristics of the river shapes with the existing discharge data and derived some regression equations. Finally, we estimated the discharge of the Amazon River branches from the SAR images.

  • PDF

REMOTELY SENSEDC IMAGE COMPRESSION BASED ON WAVELET TRANSFORM (Wavelet 변화을 이용한 우리별 수신영상 압축기법)

  • 이흥규;김성환;김경숙;최순달
    • Journal of Astronomy and Space Sciences
    • /
    • v.13 no.2
    • /
    • pp.198-209
    • /
    • 1996
  • In this paper, we present an image compression algorithm that is capable of significantly reducing the vast mount of information contained in multispectral images. The developed algorithm exploits the spectral and spatial correlations found in multispectral images. The scheme encodes the difference between images after contrast/brightness equalization to remove the spectral redundancy, and utilizes a two-dimensional wavelet trans-form to remove the spatial redundancy. The transformed images are than encoded by hilbert-curve scanning and run-length-encoding, followed by huffman coding. We also present the performance of the proposed algorithm with KITSAT-1 image as well as the LANDSAT MultiSpectral Scanner data. The loss of information is evaluated by peak signal to noise ratio (PSNR) and classification capability.

  • PDF

Novel two-stage hybrid paradigm combining data pre-processing approaches to predict biochemical oxygen demand concentration (생물화학적 산소요구량 농도예측을 위하여 데이터 전처리 접근법을 결합한 새로운 이단계 하이브리드 패러다임)

  • Kim, Sungwon;Seo, Youngmin;Zakhrouf, Mousaab;Malik, Anurag
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1037-1051
    • /
    • 2021
  • Biochemical oxygen demand (BOD) concentration, one of important water quality indicators, is treated as the measuring item for the ecological chapter in lakes and rivers. This investigation employed novel two-stage hybrid paradigm (i.e., wavelet-based gated recurrent unit, wavelet-based generalized regression neural networks, and wavelet-based random forests) to predict BOD concentration in the Dosan and Hwangji stations, South Korea. These models were assessed with the corresponding independent models (i.e., gated recurrent unit, generalized regression neural networks, and random forests). Diverse water quality and quantity indicators were implemented for developing independent and two-stage hybrid models based on several input combinations (i.e., Divisions 1-5). The addressed models were evaluated using three statistical indices including the root mean square error (RMSE), Nash-Sutcliffe efficiency (NSE), and correlation coefficient (CC). It can be found from results that the two-stage hybrid models cannot always enhance the predictive precision of independent models confidently. Results showed that the DWT-RF5 (RMSE = 0.108 mg/L) model provided more accurate prediction of BOD concentration compared to other optimal models in Dosan station, and the DWT-GRNN4 (RMSE = 0.132 mg/L) model was the best for predicting BOD concentration in Hwangji station, South Korea.

Time-history analysis based optimal design of space trusses: the CMA evolution strategy approach using GRNN and WA

  • Kaveh, A.;Fahimi-Farzam, M.;Kalateh-Ahani, M.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.3
    • /
    • pp.379-403
    • /
    • 2012
  • In recent years, the need for optimal design of structures under time-history loading aroused great attention in researchers. The main problem in this field is the extremely high computational demand of time-history analyses, which may convert the solution algorithm to an illogical one. In this paper, a new framework is developed to solve the size optimization problem of steel truss structures subjected to ground motions. In order to solve this problem, the covariance matrix adaptation evolution strategy algorithm is employed for the optimization procedure, while a generalized regression neural network is utilized as a meta-model for fitness approximation. Moreover, the computational cost of time-history analysis is decreased through a wavelet analysis. Capability and efficiency of the proposed framework is investigated via two design examples, comprising of a tower truss and a footbridge truss.

Modeling mechanical strength of self-compacting mortar containing nanoparticles using wavelet-based support vector machine

  • Khatibinia, Mohsen;Feizbakhsh, Abdosattar;Mohseni, Ehsan;Ranjbar, Malek Mohammad
    • Computers and Concrete
    • /
    • v.18 no.6
    • /
    • pp.1065-1082
    • /
    • 2016
  • The main aim of this study is to predict the compressive and flexural strengths of self-compacting mortar (SCM) containing $nano-SiO_2$, $nano-Fe_2O_3$ and nano-CuO using wavelet-based weighted least squares-support vector machines (WLS-SVM) approach which is called WWLS-SVM. The WWLS-SVM regression model is a relatively new metamodel has been successfully introduced as an excellent machine learning algorithm to engineering problems and has yielded encouraging results. In order to achieve the aim of this study, first, the WLS-SVM and WWLS-SVM models are developed based on a database. In the database, nine variables which consist of cement, sand, NS, NF, NC, superplasticizer dosage, slump flow diameter and V-funnel flow time are considered as the input parameters of the models. The compressive and flexural strengths of SCM are also chosen as the output parameters of the models. Finally, a statistical analysis is performed to demonstrate the generality performance of the models for predicting the compressive and flexural strengths. The numerical results show that both of these metamodels have good performance in the desirable accuracy and applicability. Furthermore, by adopting these predicting metamodels, the considerable cost and time-consuming laboratory tests can be eliminated.

Wavelet-transform-based damping identification of a super-tall building under strong wind loads

  • Xu, An;Wu, Jiurong;Zhao, Ruohong
    • Wind and Structures
    • /
    • v.19 no.4
    • /
    • pp.353-370
    • /
    • 2014
  • A new method is proposed in this study for estimating the damping ratio of a super tall building under strong wind loads with short-time measured acceleration signals. This method incorporates two main steps. Firstly, the power spectral density of wind-induced acceleration response is obtained by the wavelet transform, then the dynamic characteristics including the natural frequency and damping ratio for the first vibration mode are estimated by a nonlinear regression analysis on the power spectral density. A numerical simulation illustrated that the damping ratios identified by the wavelet spectrum are superior in precision and stability to those values obtained from Welch's periodogram spectrum. To verify the efficiency of the proposed method, wind-induced acceleration responses of the Guangzhou West Tower (GZWT) measured in the field during Typhoon Usagi, which affected this building on September 22, 2013, were used. The damping ratios identified varied from 0.38% to 0.61% in direction 1 and from 0.22% to 0.59% in direction 2. This information is expected to be of considerable interest and practical use for engineers and researchers involved in the wind-resistant design of super-tall buildings.

Forecast of the Daily Inflow with Artificial Neural Network using Wavelet Transform at Chungju Dam (웨이블렛 변환을 적용한 인공신경망에 의한 충주댐 일유입량 예측)

  • Ryu, Yongjun;Shin, Ju-Young;Nam, Woosung;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.12
    • /
    • pp.1321-1330
    • /
    • 2012
  • In this study, the daily inflow at the basin of Chungju dam is predicted using wavelet-artificial neural network for nonlinear model. Time series generally consists of a linear combination of trend, periodicity and stochastic component. However, when framing time series model through these data, trend and periodicity component have to be removed. Wavelet transform which is denoising technique is applied to remove nonlinear dynamic noise such as trend and periodicity included in hydrometeorological data and simple noise that arises in the measurement process. The wavelet-artificial neural network (WANN) using data applied wavelet transform as input variable and the artificial neural network (ANN) using only raw data are compared. As a results, coefficient of determination and the slope through linear regression show that WANN is higher than ANN by 0.031 and 0.0115 respectively. And RMSE and RRMSE of WANN are smaller than those of ANN by 37.388 and 0.099 respectively. Therefore, WANN model applied in this study shows more accurate results than ANN and application of denoising technique through wavelet transforms is expected that more accurate predictions than the use of raw data with noise.