• Title/Summary/Keyword: Wavelet domain

Search Result 572, Processing Time 0.04 seconds

Fault Detection and Identification of Induction Motors with Current Signals Based on Dynamic Time Warping

  • Bae, Hyeon;Kim, Sung-Shin;Vachtsevanos, George
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.2
    • /
    • pp.102-108
    • /
    • 2007
  • The issues of preventive and condition-based maintenance, online monitoring, system fault detection, diagnosis, and prognosis are of increasing importance. This study introduces a technique to detect and identify faults in induction motors. Stator currents were measured and stored by time domain. The time domain is not suitable for representing current signals, so wavelet transform is used to convert the signal; onto frequency domain. The raw signals can not show the significant feature, therefore difference values are applied. The difference values were transformed by wavelet transform and the features are extracted from the transformed signals. The dynamic time warping method was used to identify the four fault types. This study describes the results of detecting fault using wavelet analysis.

Wavelet Transform Based Time-Frequency Domain Reflectometry for Underground Power Cable (지중 전력 케이블에 대한 웨이블릿 변환 기반 시간-주파수 영역 반사파 계측법 개발)

  • Lee, Sin-Ho;Choi, Yoon-Ho;Park, Jin-Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2333-2338
    • /
    • 2011
  • In this paper, we develope a wavelet transform based time-frequency domain reflectometry (WTFDR) for the fault localization of underground power cable. The conventional TFDR (CTFDR) is more accurate than other reflectometries to localize the cable fault. However, the CTFDR has some weak points such as long computation time and hard implementation because of the nonlinearity of the Wigner-Ville distribution used in the CTFDR. To solve the problem, we use the complex wavelet transform (CWT) because the CWT has the linearity and the reference signal in the TFDR has a complex form. To confirm the effectiveness and accuracy of the proposed method, the actual experiments are carried out for various fault types of the underground power cable.

Image Denoising using Adaptive Threshold Method in Wavelet Domain

  • Gao, Yinyu;Kim, Nam-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.6
    • /
    • pp.763-768
    • /
    • 2011
  • Image denoising is a lively research field. Today the researches are focus on the wavelet domain especially using wavelet threshold method. We proposed an adaptive threshold method which considering the characteristic of different sub-band, the method is adaptive to each sub-band. Experiment results show that the proposed method extracts white Gaussian noise from original signals in each step scale and eliminates the noise effectively. In addition, the method also preserves the detail information of the original image, obtaining superior quality image with higher peak signal to noise ratio(PSNR).

Multispectral Image Compression Using Classification in Wavelet Domain and Classified Inter-channel Prediction and Selective Vector Quantization in Wavelet Domain (웨이브릿 영역에서의 영역분류와 대역간 예측 및 선택적 벡터 양자화를 이용한 다분광 화상데이타의 압축)

  • 석정엽;반성원;김병주;박경남;김영춘;이건일
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.31-34
    • /
    • 2000
  • In this paper, we proposed multispectral image compression method using CIP (classified inter-channel prediction) and SVQ (selective vector quantization) in wavelet domain. First, multispectral image is wavelet transformed and classified into one of three classes considering reflection characteristics of the subband with the lowest resolution. Then, for a reference channel which has the highest correlation with other channels, the variable VQ is performed in the classified intra-channel to remove spatial redundancy. For other channels, the CIP is performed to remove spectral redundancy. Finally, the prediction error is reduced by performing SVQ. Experiments are carried out on a multispectral image. The results show that the proposed method reduce the bit rate at higher reconstructed image quality and improve the compression efficiency compared to conventional method.

  • PDF

Determination of Noise Threshold from Signal Histogram in the Wavelet Domain

  • Kim, Eunseo;Lee, Kamin;Yang, Sejung;Lee, Byung-Uk
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.2
    • /
    • pp.156-160
    • /
    • 2014
  • Thresholding in frequency domain is a simple and effective noise reduction technique. Determination of the threshold is critical to the image quality. The optimal threshold minimizing the Mean Square Error (MSE) is chosen adaptively in the wavelet domain; we utilize an equation of the MSE for the soft-thresholded signal and the histogram of wavelet coefficients of the original image and noisy image. The histogram of the original signal is estimated through the deconvolution assuming that the probability density functions (pdfs) of the original signal and the noise are statistically independent. The proposed method is quite general in that it does not assume any prior for the source pdf.

Noise elimination of PD signal using Wavelet Transform (웨이브렛 변환을 이용한 부분방전신호의 잡음제거 특성)

  • Lee, Hyun-Dong;Ju, Jae-Hyun;Kim, Ki-Chai;Park, Won-Zoo;Lee, Kwang-Sik;Lee, Dong-In
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1679-1681
    • /
    • 2001
  • In this paper, As the wavelet transform has the properties of multi-resolution analysis and time-frequency domain localization, application of wavelet transform is used at partial discharge(PD) signal detected by electromagnetic wave detection method to extract PD signal's various frequency component and its time domain. therefore we can analyzed PD signal's time-frequency domain simultaneously. On the other hand, using wavelet transform denoising process, inclued noise signal in detected PD signal is well elimiated. we can propose the true shape of PD signal.

  • PDF

Speckle Noise Reduction and Flaw Detection of Ultrasonic Non-destructive Testing Based on Wavelet Domain AR Model (웨이브렛 평면 AR 모델을 이용한 초음파 비파괴 검사의 스펙클 잡음 감소 및 결함 검출)

  • 이영석;임래묵;김덕영;신동환;김성환
    • Journal of Welding and Joining
    • /
    • v.17 no.6
    • /
    • pp.100-107
    • /
    • 1999
  • In this paper, we deal with the speckle noise reduction and parameter estimation of ultrasonic NDT(non-destructive test) signals obtained during weld inspection of piping. The overall approach consists of three major steps, namely, speckle noise analysis, proposition of wavelet domain AR(autoregressive) model and flaw detection by proposed model parameter. The data are first processed whereby signals obtained using vertical and angle beam transducer. Correlation properties of speckle noise are then analyzed using multiresolution analysis in wavelet domain. The parameter estimation curve obtained using the proposed model is classified a flaw in weld region where is contaminated by severe speckle noise and also clear flaw signal is obtained through CA-CFAR threshold estimator that is a nonlinear post-processing method for removing the noise from reconstructed ultrasonic signal.

  • PDF

Characteristics of Partial Discharges Signals Utilizing Method of Wavelet Transform Denoising Process (웨이브렛 변환의 노이즈 제거기법에 의한 부분방전신호 특성)

  • 이현동;이광식
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.4
    • /
    • pp.62-68
    • /
    • 2001
  • In this paper, As the wavelet transform has the properties of multi-resolution analysis and time-frequency domain localization, application of wavelet transform is used at partial discharge(PD) signal detected by electrical detection method to extract PD signal's various frequency component and its time domain. therefore we can analyzed PD signal's time-frequency domain simultaneously. On the other hand, using wavelet transform denoising process, included noise signal in detected PD signal is well eliminated. we can propose the true shine of PD signal.

  • PDF

Characterizing Co-movements between Indian and Emerging Asian Equity Markets through Wavelet Multi-Scale Analysis

  • Shah, Aasif;Deo, Malabika;King, Wayne
    • East Asian Economic Review
    • /
    • v.19 no.2
    • /
    • pp.189-220
    • /
    • 2015
  • Multi-scale representations are effective in characterising the time-frequency characteristics of financial return series. They have the capability to reveal the properties not evident with typical time domain analysis. Given the aforesaid, this study derives crucial insights from multi scale analysis to investigate the co-movements between Indian and emerging Asian equity markets using wavelet correlation and wavelet coherence measures. It is reported that the Indian equity market is strongly integrated with Asian equity markets at lower frequency scales and relatively less blended at higher frequencies. On the other hand the results from cross correlations suggest that the lead-lag relationship becomes substantial as we turn to lower frequency scales and finally, wavelet coherence demonstrates that this correlation eventually grows strong in the interim of the crises period at lower frequency scales. Overall the findings are relevant and have strong policy and practical implications.

One-dimensional and Image Signal Denoising Using an Adaptive Wavelet Shrinkage Filter (적응적 웨이블렛 수축 필터를 이용한 일차원 및 영상 신호의 잡음 제거)

  • Lim, Hyun;Park, Soon-Young;Oh, Il-Whan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.3-15
    • /
    • 2000
  • In this paper we present a new image denoising filter that can suppress additive noise components while preserving signal components in the wavelet domain. The proposed filter, which we call an adaptive wavelet shrinkage(AWS) filter, is composed of two operators: the wavelet killing operator and the adaptive shrinkage operator. Each operator is selected based on the threshold value which is estimated adaptively by using the local statistics of the wavelet coefficients. In the wavelet killing operation, the small wavelet coefficients below the threshold value are replaced by zero to suppress noise components in the wavelet domain. The adaptive shrinkage operator attenuates noise components from the wavelet components above the threshold value adaptively. The experimental results show that the proposed filter is more effective than the other methods in preserving signal components while suppressing noise.

  • PDF