• Title/Summary/Keyword: Wavelet domain

Search Result 572, Processing Time 0.03 seconds

A Study on Fast Stereo Matching Algorithm using Belief Propagation in Multi-resolution Domain (다해상도 영역에서 신뢰확산 알고리즘을 사용한 고속의 스테레오 정합 알고리즘에 관한 연구)

  • Jang, SunBong;Jee, Innho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.4
    • /
    • pp.67-73
    • /
    • 2008
  • In the Markov network which models disparity map with the Markov Random Field(MRF), the belief propagation algorithm is operated by message passing between nodes corresponding to each pixels. Belief propagation algorithm required much iteration for accurate result. In this paper, we propose the stereo matching algorithm using belief propagation in multi-resolution domain. Multi-resolution method based on wavelet or lifting can reduce the search area, therefore this algorithm can generate disparity map with fast speed.

  • PDF

Saliency Detection Using Entropy Weight and Weber's Law (엔트로피 가중치와 웨버 법칙을 이용한 세일리언시 검출)

  • Lee, Ho Sang;Moon, Sang Whan;Eom, Il Kyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.1
    • /
    • pp.88-95
    • /
    • 2017
  • In this paper, we present a saliency detection method using entropy weight and Weber contrast in the wavelet transform domain. Our method is based on the commonly exploited conventional algorithms that are composed of the local bottom-up approach and global top-down approach. First, we perform the multi-level wavelet transform for the CIE Lab color images, and obtain global saliency by adding the local Weber contrasts to the corresponding low-frequency wavelet coefficients. Next, the local saliency is obtained by applying Gaussian filter that is weighted by entropy of wavelet high-frequency subband. The final saliency map is detected by non-lineally combining the local and global saliencies. To evaluate the proposed saliency detection method, we perform computer simulations for two image databases. Simulations results show the proposed method represents superior performance to the conventional algorithms.

Depth From Defocus using Wavelet Transform (웨이블릿 변환을 이용한 Depth From Defocus)

  • Choi, Chang-Min;Choi, Tae-Sun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.5 s.305
    • /
    • pp.19-26
    • /
    • 2005
  • In this paper, a new method for obtaining three-dimensional shape of an object by measuring relative blur between images using wavelet analysis has been described. Most of the previous methods use inverse filtering to determine the measure of defocus. These methods suffer from some fundamental problems like inaccuracies in finding the frequency domain representation, windowing effects, and border effects. Besides these deficiencies, a filter, such as Laplacian of Gaussian, that produces an aggregate estimate of defocus for an unknown texture, can not lead to accurate depth estimates because of the non-stationary nature of images. We propose a new depth from defocus (DFD) method using wavelet analysis that is capable of performing both the local analysis and the windowing technique with variable-sized regions for non-stationary images with complex textural properties. We show that normalized image ratio of wavelet power by Parseval's theorem is closely related to blur parameter and depth. Experimental results have been presented demonstrating that our DFD method is faster in speed and gives more precise shape estimates than previous DFD techniques for both synthetic and real scenes.

3-D Lossy Volumetric Medical Image Compression with Overlapping method and SPIHT Algorithm and Lifting Steps (Overlapping method와 SPIHT Algorithm과 Lifting Steps을 이용한 3차원 손실 의료 영상 압축 방법)

  • 김영섭
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.3
    • /
    • pp.263-269
    • /
    • 2003
  • This paper focuses on lossy medical image compression methods for medical images that operate on three-dimensional(3D) irreversible integer wavelet transform. We offer an application of the Set Partitioning in Hierarchical Trees(SPIHT) algorithm〔l-3〕to medical images, using a 3-D wavelet decomposition and a 3-D spatial dependence tree. The wavelet decomposition is accomplished with integer wavelet filters implemented with the lifting method, where careful scaling and truncations keep the integer precision small and the transform unitary. As the compression rate increases, the boundaries between adjacent coding units become increasingly visible. Unlike video, the volume image is examined under static condition, and must not exhibit such boundary artifacts. In order to eliminate them, we utilize overlapping at axial boundaries between adjacent coding units. We have tested our encoder on medical images using different integer filters. Results show that our algorithm with certain filters performs as well. The improvement is visibly manifested as fewer ringing artifacts and noticeably better reconstruction of low contrast.

  • PDF

Spike Rejection Method for Improving Altitude Control Performance of Quadrotor UAV Using Ultrasonic Rangefinder (초음파 거리계를 이용하는 쿼드로터 무인항공기의 고도 제어 성능 향상을 위한 스파이크 제거 기법)

  • Kim, Sung-Hoon;Choi, Kyeung-Sik;Hong, Gyo-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.3
    • /
    • pp.196-202
    • /
    • 2016
  • In this paper, a stationary wavelet transform method is proposed for improving the altitude control performance of quadrotor UAV using an ultrasonic rangefinder. A ground tests are conducted using an ultrasonic rangefinder that is much used for vertical takeoff and landing. An ultrasonic rangefinder suffers from signal's spike due to specular reflectance and acoustic noise. The occurred spikes in short time span need to be analyzed at both sides time and frequency domain. It was known that stationary wavelet transform is the transferring solution to the problem occurred by down sampling from DWT also more efficient to remove noise than DWT. The analyzed spikes of the ultrasonic rangefinder using a stationary wavelet transform and experimental results show that it can effectively remove the spikes of the ultrasonic rangefinder.

Muscle Fatigue Analysis by Median Frequency and Wavelet Transform During Lumbar Extension Exercises (요추신전운동 시 중앙주파수와 웨이브렛 변환을 이용한 근피로도 분석)

  • 장근;김영호
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.377-382
    • /
    • 2004
  • In the present study, thirteen healthy volunteers performed lumbar extension exercises at 48$^{\circ}$/s, loaded by 40, 50, 60kg(about 44, 55, 66% of maximum voluntary contraction). During the whole period of exercises, electromyographic(EMG) signal was measured in the erector spinae muscle in order to determine muscle fatigue. Using the wavelet transform, EMG signal was separated by various frequency ranges in the time-frequency domain, and muscle fatigue was analyzed, comparing with the results based on the median frequency(MDF). MDF shifted toward the lower frequency ranges with the muscle fatigue, showing a single characteristic frequency. On the other hand, wavelet transform of EMG signals resulted in increased power amplitude in lower frequency ranges(0-125Hz), and decreased power amplitude in higher frequency ranges(375-468Hz). This study reveals that the muscle fatigue during dynamic movement is explained better by wavelet analysis.

Applications of Discrete Wavelet Analysis for Predicting Internal Quality of Cherry Tomatoes using VIS/NIR Spectroscopy

  • Kim, Ghiseok;Kim, Dae-Yong;Kim, Geon Hee;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.38 no.1
    • /
    • pp.48-54
    • /
    • 2013
  • Purpose: This study evaluated the feasibility of using a discrete wavelet transform (DWT) method as a preprocessing tool for visible/near-infrared spectroscopy (VIS/NIRS) with a spectroscopic transmittance dataset for predicting the internal quality of cherry tomatoes. Methods: VIS/NIRS was used to acquire transmittance spectrum data, to which a DWT was applied to generate new variables in the wavelet domain, which replaced the original spectral signal for subsequent partial least squares (PLS) regression analysis and prediction modeling. The DWT concept and its importance are described with emphasis on the properties that make the DWT a suitable transform for analyzing spectroscopic data. Results: The $R^2$ values and root mean squared errors (RMSEs) of calibration and prediction models for the firmness, sugar content, and titratable acidity of cherry tomatoes obtained by applying the DWT to a PLS regression with a set of spectra showed more enhanced results than those of each model obtained from raw data and mean normalization preprocessing through PLS regression. Conclusions: The developed DWT-incorporated PLS models using the db5 wavelet base and selected approximation coefficients indicate their feasibility as good preprocessing tools by improving the prediction of firmness and titratable acidity for cherry tomatoes with respect to $R^2$ values and RMSEs.

A Scheme for Improvement of Positioning Accuracy Based on BSS in Jamming Environments (재밍 환경에서 BSS 기반 측위 정확도 향상 기법)

  • Cha, Gyeong Hyeon;Song, Yu Chan;Hwang, Yu Min;Sang, Lee Jae;Kim, Jin Young;Shin, Yoan
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.4
    • /
    • pp.58-63
    • /
    • 2015
  • Due to GPS signal's vulnerability of jamming attack, various enhancement techniques are needed. Among variety of techniques, we focused on GPS receiver's anti-jamming techniques. There are many anti-jamming methods at GPS receivers which include filtering methods in time domain, frequency domain and space domain. However, these methods are ineffective to signals, which include both jamming and noise. To solve the problem, this paper proposes a jamming separation scheme by using a BSS method in a jamming environment. As separated GPS signals include noise after the jamming separation method, it is difficult to receive accurate GPS signals. For this reason, this paper also proposes a wavelet de-noising method to effectively eliminate noise. Experimental results of this paper are based on a real field test data of an integrated GPS/QZSS/Wi-Fi positioning system. At the end, the simulation result demonstrates its superiority by showing improved positioning accuracy.

A Fast Algorithm with Adaptive Thresholding for Wavelet Transform Based Blocking Artifact Reduction (웨이브렛 기반 블록화 현상 제거에 대한 고속 알고리듬 및 적응 역치화 기법)

  • 장익훈;김남철
    • Journal of Broadcast Engineering
    • /
    • v.2 no.1
    • /
    • pp.45-55
    • /
    • 1997
  • In this paper, we propose a fast algorithm with adaptive thresholding for the wavelet transform (WT) based blocking artifact reduction. In the fast algorithm, all processings that are equivalent to the processing in WT domain of the first and second scale are performed in spatial domain. In the adaptive thresholding, the threshold values used to classify the block boundary are selected adaptively according to each input image by using the statistical properties of the WT of the coded signal at block boundary and at block center, which can be obtained in spatial domain. Experimental results showed that the proposed fast algorithm is about 10 times faster than the WT-based algorithm. It also was found that the postprocessing with proposed adaptive thresholding yields some PSNR improvement and better subjective quality over that with nonadaptive thresholding which has best performance at high compression ratios of a certain .image, even at low compression ratios.

  • PDF

Analysis of the Ground Bounce in Power Planes of PCB Using the Haar-Wavelet MRTD (Haar 웨이블릿 기반 MRTD를 이용한 PCB 전원 공급면에서의 Ground Bounce 해석)

  • 천정남;이종환;김형동
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.7
    • /
    • pp.1065-1073
    • /
    • 1999
  • This paper analyzed the ground bounce caused by the power plane resonance in the multilayered printed circuit board(PCB) using the Haar-wavelet-based Multiresolution Time-Domain (MRTD). In conventional Finite-Difference Time-Domain(FDTD), the highly fine vertical cell is needed to represent the distance between $V_{cc}$ plane and ground plane since the two planes are very close. Therefore the time step $\Deltat$ must be very small to satisfy the stability condition. As a result, a large number of iterations are needed to obtain the response in wanted time. For this problem, this paper showed that the computation time can be reduced by application of the MRTD method. The results obtained by the MRTD agree very well with those by FDTD method and analytic solutions. In conclusion, this paper proved the efficiency and accuracy of MRTD method for analyzing the EMI/EMC problems in PCB.

  • PDF