International Journal of Computer Science & Network Security
/
제22권2호
/
pp.123-130
/
2022
During the past decades, detection of gear defects remains as a major problem, especially when the gears are subject to non-stationary phenomena. The idea of this paper is to mixture a multilevel wavelet transform with a fast EMD decomposition in order to early detect gear defects. The sensitivity of a kurtosis is used as an indicator of gears defect burn. When the gear is damaged, the appearance of a crack on the gear tooth disrupts the signal. This is due to the presence of periodic pulses. Nevertheless, the existence of background noise induced by the random excitation can have an impact on the values of these temporal indicators. The denoising of these signals by multilevel wavelet transform improves the sensitivity of these indicators and increases the reliability of the investigation. Finally, a defect diagnosis result can be obtained after the fast transformation of the EMD. The proposed approach consists in applying a multi-resolution wavelet analysis with variable decomposition levels related to the severity of gear faults, then a fast EMD is used to early detect faults. The proposed mixed methods are evaluated on vibratory signals from the test bench, CETIM. The obtained results have shown the occurrence of a teeth defect on gear on the 5th and 8th day. This result agrees with the report of the appraisal made on this gear system.
In this paper, design of an error model is presented in which the bias characteristic of the MEMS IMU is taken into consideration for performance enhancement of the MEMS IMU-based GPS/INS integrated navigation system. The drift bias of the MEMS IMU is modeled as a 1st-order Gauss-Markov (GM) process, and the autocorrelation function is obtained from the collected IMU data, and the correlation time is estimated from this. Prior to obtaining the autocorrelation function, the noise of IMU data is eliminated based on wavelet. As a result of simulation, it is represented that the parameters of error model can be estimated correctly only when a proper denoising is performed according to dynamic behavior of drift bias, and that the integrated navigation system based on error model, in which the drift bias is considered, provides more correct navigation performance compared to the integrated navigation system based on error model in which the drift bias is not considered.
현재, 영상처리는 다양한 분야에서 활용되고 있으며, 영상의 우수한 화질을 위해 열화현상을 제거하여야 한다. 잡음은 열화현상의 대표적인 원인으로서, 영상은 AWGN(additive white Gaussian noise)에 의해 많이 훼손된다. 따라서 본 논문에서는 AWGN을 제거하기 위해, 공간영역에서의 워너 필터와 웨이브렛 영역에서의 임계값 잡음 처리방법을 병렬 연결하여 처리하는 복합 필터 알고리즘을 제안하였다. 웨이브렛 영역에서의 처리방법은 각 스케일에 따라 서로 다른 thresholding function을 사용하여 처리하며, 제안한 변형된 thresholding function은 parent 웨이브렛 계수와 child 웨이브렛 계수를 이용함으로서, 우수한 잡음제거 특성을 나타냈다.
함정에 탑재되는 주요장비는 내충격성능을 확인하기 위해 충격시험을 실시하고 계측된 신호는 최대충격가속도, 지속시간, 응답스펙트럼 등 충격응답신호의 신간이력을 분석한다. 그러나 계측된 신호는 배경잡음, 계측기오차, 케이블의 과도운동 등으로 충격성잡음과 백색잡음으로 인한 신호왜곡이 발생할 수 있으므로 충격시험으로부터 정확한 시간이력을 추출하기 위해서는 이러한 잡음을 제거해야 한다. 충격성잡음은 중간값필터를 이용하여 제거하고 백색잡음은 웨이블렛의 계수값을 축소함으로써 잡음이 제거된 충격응답신호의 시간이력으로부터 정도높은 최대충격, 지속시간 및 충격응답스펙트럼이 획득가능하다. 제안된 기법의 타당성을 판단하기 위해 수치 시뮬레이션을 수행한 결과 신호대잡음비가 30dB 이상 향상되었음을 확인하였고, 실제계측된 수중폭발충격신호에 적용시켜 향상된 충격응답스펙트럼을 추출하였다.
X-ray 영상 시스템에서는, 크게 2 종류의 noise 성분이 함유되어있다. 먼저 x-ray 방사선이 조사되어질 때, 검출기에서의 방사선의 상호작용으로부터 발생되어지는 것으로서 랜덤하게 발생되어지는 Poisson noise 성분이다. 다음으로 noise 성분은 readout electronics noise, pixel pattern noise 그리고 off-set noise 등으로부터 발생되어지는 Gaussian noise 성분이다. 그러나, x-ray 영상에서는 Gaussian noise가 아닌, Poisson noise로 모델링 되어진다. Gaussian noise에 의해서 발생되어지는 noise 성분은 위너필터 혹은 웨이브렛을 사용하여 쉽게 제거가 가능하지만, Poisson noise와 같은 랜덤 noise를 제거하기 위해서는 복잡한 분석기법이 필요하게 한다. 이 논문에서는 웨이브렛 영역에서 x-ray 영상의 Poisson noise를 제거하고자 하였으며, 적용된 분석 기법은 최적화된 웨이브렛 분석기법인 IBS(Improved BayesShrink)을 사용하였다. 적용된 IBS 기법은 cone-beam CT의 x-ray 영상에서의 기존의 방법에 비해 향상된 결과를 보여주었다.
잡음이 존재하는 환경에서의 신호의 분산을 측정하는 것은 잡음 제거에 중요한 요소를 맡고 있다. 잡음을 제거하는 방법 중에 가장 보편적으로 사용하는 방법에는 위너 필터가 존재한다. 웨이블릿 기반의 위너 필터링은 저복잡성을 지닌 이미지 잡음 제거에 탁월한 효과를 보인다. 신호의 분산을 측정할 경우 어떤 모양의 필터를 적용하여 측정하느냐에 따라 분산이 달라지게 되므로 이미지의 잡음 제거에 영향을 미치게 된다. 이에 본 논문은 위너 필터에 적용되는 필터를 기존의 정사각형 모양(square-shaped)과 제안하는 십자가 모양(cross-shaped)을 각각 적용하여 이미지의 잡음을 제거하였다.
웨이블릿 디노이징 기법은 웨이블릿 계수들의 thresholding 에 의해 부가적인 가우시안 노이즈들을 제가하는데 사용된다. 필터에 기반한 다른 많은 변환들처럼, 웨이블릿 scaling 방법들은 이미지의 경계선들의 근처에 블러링 현상이나 인공적인 잡음들이 나타나게 된다. 본 논문에서 구현하고자 하는 웨이블릿 변환 필터의 구현 배경은 경계선 부분의 손실없이 이미지의 노이즈 제거를 위한 것이다. 많은 이미지 향상과 회복기법들은 이러한 붕괴처리의 효과들을 위한 보상으로 개발되었다. 또한 뉴럴 필터, 퍼지 필터, LMS L-filter, quadratic filter, sigma filter 등은 이러한 이미지의 질을 개선하기 위한 수학적인 도구들이라고 할 수 있다. [1]
본 논문에서는 contourlet 변환을 이용하여 잡음을 제거하는 방법을 제안한다. 영상 센서의 발전으로 이미지의 해상도가 좋아지는 반면 잡음에 민감해진다. 그러므로 이를 전처리 단계에서 처리해주는 것이 필요하다. 잡음은 주로 자연 영상의 윤곽선에서 민감하게 반응하기 때문에 고주파대의 잡음을 최대한 정확하게 제거하는 과정이 중요하다. Contourlet 변환은 기존의 wavelet 변환의 다중 스케일과 더불어 다양한 방향 필터뱅크를 이용하여 방향 성분에 대하여 풍부한 정보를 얻을 수 있는 변환이다. 영상의 화이트 가우시안 잡음을 제거하기 위해 contourlet 변환 영역에서의 계수를 이변수 가우스 확률 모델로 설정하고 Bayes 추정법을 사용한다. Bayes 추정법에 필요한 파라미터들은 근사적으로 추정한다. 제안한 방식을 통하여 잡음이 제거된 영상에 추가적으로 Wiener filter와 cycle-spinning을 적용하여 더 높은 PSNR (peak signal-to-noise ratio)값을 얻을 수 있다. 모의실험을 통해 제안한 방식의 PSNR 값과 결과영상으로 성능이 우수함을 확인하였다.
원자력발전소의 열출력 계산 결과에 가장 큰 영향을 미치는 변수는 주급수 유량이며, 측정방식상의 특성(Venturi Fouling)으로 인해 계산시 과다하게 반영될 소지가 있다 본 연구에서는 이 측정 오차를 최소화하기 위하여 뉴로-퍼지 논리를 이용하여 주급수 유량을 예측한 후 그 결과를 통해 열출력을 재평가하고자 하였다. 즉, 뉴로-퍼지로의 입력 변수(증기발생기 압력 및 수위. 터빈 충동실 압력)들은 모의훈련으로 출력을 상승시키면서 취득한 후 Wavelet Denoising 기법을 이용하여 노이즈를 제거시키고. 뉴로-퍼지 추론 계통의 파라메타들을 최적화시키기 위하여 유전적 알고리듬 및 최소자승법에 의한 Hybrid Learning Rule을 이용하여 학습시켰다. 시뮬레이션을 수행한 결과, 주급수 유량이 양호하게 예측되어, 이 결과를 토대로 열출력을 평가하는데 본 알고리듬의 적용이 성공적임을 입증하였다.
It has been a challenge for researchers to accurately measure high temperature creep strain online without damaging the mechanical properties of the pipe surface. To this end, a noncontact method for measuring high temperature strain of a main steam pipe based on digital image correlation was proposed, and a system for monitoring of high temperature strain was designed and developed. Wavelet thresholding was used for denoising measurement data. The sub-pixel displacement search algorithm with curved surface fitting was improved to increase measurement accuracy. A field test was carried out to investigate the designed monitoring system of high temperature strain. The measuring error was less than $0.4ppm/^{\circ}C$, which meets actual measurement requirements for engineering. Our findings provide a new way to monitor creep damage of the main steam pipe of a boiler of an ultra-supercritical power plant in service.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.