• 제목/요약/키워드: Wavelet denoising

검색결과 137건 처리시간 0.025초

A New Approach for Detection of Gear Defects using a Discrete Wavelet Transform and Fast Empirical Mode Decomposition

  • TAYACHI, Hana;GABZILI, Hanen;LACHIRI, Zied
    • International Journal of Computer Science & Network Security
    • /
    • 제22권2호
    • /
    • pp.123-130
    • /
    • 2022
  • During the past decades, detection of gear defects remains as a major problem, especially when the gears are subject to non-stationary phenomena. The idea of this paper is to mixture a multilevel wavelet transform with a fast EMD decomposition in order to early detect gear defects. The sensitivity of a kurtosis is used as an indicator of gears defect burn. When the gear is damaged, the appearance of a crack on the gear tooth disrupts the signal. This is due to the presence of periodic pulses. Nevertheless, the existence of background noise induced by the random excitation can have an impact on the values of these temporal indicators. The denoising of these signals by multilevel wavelet transform improves the sensitivity of these indicators and increases the reliability of the investigation. Finally, a defect diagnosis result can be obtained after the fast transformation of the EMD. The proposed approach consists in applying a multi-resolution wavelet analysis with variable decomposition levels related to the severity of gear faults, then a fast EMD is used to early detect faults. The proposed mixed methods are evaluated on vibratory signals from the test bench, CETIM. The obtained results have shown the occurrence of a teeth defect on gear on the 5th and 8th day. This result agrees with the report of the appraisal made on this gear system.

Design of an Error Model for Performance Enhancement of MEMS IMU-Based GPS/INS Integrated Navigation Systems

  • Koo, Moonsuk;Oh, Sang Heon;Hwang, Dong-Hwan
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제1권1호
    • /
    • pp.51-57
    • /
    • 2012
  • In this paper, design of an error model is presented in which the bias characteristic of the MEMS IMU is taken into consideration for performance enhancement of the MEMS IMU-based GPS/INS integrated navigation system. The drift bias of the MEMS IMU is modeled as a 1st-order Gauss-Markov (GM) process, and the autocorrelation function is obtained from the collected IMU data, and the correlation time is estimated from this. Prior to obtaining the autocorrelation function, the noise of IMU data is eliminated based on wavelet. As a result of simulation, it is represented that the parameters of error model can be estimated correctly only when a proper denoising is performed according to dynamic behavior of drift bias, and that the integrated navigation system based on error model, in which the drift bias is considered, provides more correct navigation performance compared to the integrated navigation system based on error model in which the drift bias is not considered.

AWGN에 훼손된 영상복원을 위한 복합 필터 알고리즘에 관한 연구 (A Study on Mixed Filter Algorithm for Restoration of Image Corrupted by AWGN)

  • ;김남호
    • 한국정보통신학회논문지
    • /
    • 제16권5호
    • /
    • pp.1064-1070
    • /
    • 2012
  • 현재, 영상처리는 다양한 분야에서 활용되고 있으며, 영상의 우수한 화질을 위해 열화현상을 제거하여야 한다. 잡음은 열화현상의 대표적인 원인으로서, 영상은 AWGN(additive white Gaussian noise)에 의해 많이 훼손된다. 따라서 본 논문에서는 AWGN을 제거하기 위해, 공간영역에서의 워너 필터와 웨이브렛 영역에서의 임계값 잡음 처리방법을 병렬 연결하여 처리하는 복합 필터 알고리즘을 제안하였다. 웨이브렛 영역에서의 처리방법은 각 스케일에 따라 서로 다른 thresholding function을 사용하여 처리하며, 제안한 변형된 thresholding function은 parent 웨이브렛 계수와 child 웨이브렛 계수를 이용함으로서, 우수한 잡음제거 특성을 나타냈다.

과도응답신호의 잡음제거기법 (A Denoising Method for the Transient Response Signal)

  • 안호일
    • 대한조선학회논문집
    • /
    • 제38권3호
    • /
    • pp.117-122
    • /
    • 2001
  • 함정에 탑재되는 주요장비는 내충격성능을 확인하기 위해 충격시험을 실시하고 계측된 신호는 최대충격가속도, 지속시간, 응답스펙트럼 등 충격응답신호의 신간이력을 분석한다. 그러나 계측된 신호는 배경잡음, 계측기오차, 케이블의 과도운동 등으로 충격성잡음과 백색잡음으로 인한 신호왜곡이 발생할 수 있으므로 충격시험으로부터 정확한 시간이력을 추출하기 위해서는 이러한 잡음을 제거해야 한다. 충격성잡음은 중간값필터를 이용하여 제거하고 백색잡음은 웨이블렛의 계수값을 축소함으로써 잡음이 제거된 충격응답신호의 시간이력으로부터 정도높은 최대충격, 지속시간 및 충격응답스펙트럼이 획득가능하다. 제안된 기법의 타당성을 판단하기 위해 수치 시뮬레이션을 수행한 결과 신호대잡음비가 30dB 이상 향상되었음을 확인하였고, 실제계측된 수중폭발충격신호에 적용시켜 향상된 충격응답스펙트럼을 추출하였다.

  • PDF

Cone-beam CT에서 웨이브렛 역치값을 이용한 x-ray 영상에서의 노이즈 제거 (Noise Reduction of medical X-ray Image using Wavelet Threshold in Cone-beam CT)

  • 박종덕;허영;진승오;전성채
    • 전자공학회논문지SC
    • /
    • 제44권6호
    • /
    • pp.42-48
    • /
    • 2007
  • X-ray 영상 시스템에서는, 크게 2 종류의 noise 성분이 함유되어있다. 먼저 x-ray 방사선이 조사되어질 때, 검출기에서의 방사선의 상호작용으로부터 발생되어지는 것으로서 랜덤하게 발생되어지는 Poisson noise 성분이다. 다음으로 noise 성분은 readout electronics noise, pixel pattern noise 그리고 off-set noise 등으로부터 발생되어지는 Gaussian noise 성분이다. 그러나, x-ray 영상에서는 Gaussian noise가 아닌, Poisson noise로 모델링 되어진다. Gaussian noise에 의해서 발생되어지는 noise 성분은 위너필터 혹은 웨이브렛을 사용하여 쉽게 제거가 가능하지만, Poisson noise와 같은 랜덤 noise를 제거하기 위해서는 복잡한 분석기법이 필요하게 한다. 이 논문에서는 웨이브렛 영역에서 x-ray 영상의 Poisson noise를 제거하고자 하였으며, 적용된 분석 기법은 최적화된 웨이브렛 분석기법인 IBS(Improved BayesShrink)을 사용하였다. 적용된 IBS 기법은 cone-beam CT의 x-ray 영상에서의 기존의 방법에 비해 향상된 결과를 보여주었다.

Cross-shaped 위너 필터를 이용한 웨이블릿 기반의 이미지 잡음 제거 (Wavelet Domain Image Denoising by using Cross-shaped Wiener Filter)

  • 유종상;이경준;정제창
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2012년도 추계학술대회
    • /
    • pp.122-124
    • /
    • 2012
  • 잡음이 존재하는 환경에서의 신호의 분산을 측정하는 것은 잡음 제거에 중요한 요소를 맡고 있다. 잡음을 제거하는 방법 중에 가장 보편적으로 사용하는 방법에는 위너 필터가 존재한다. 웨이블릿 기반의 위너 필터링은 저복잡성을 지닌 이미지 잡음 제거에 탁월한 효과를 보인다. 신호의 분산을 측정할 경우 어떤 모양의 필터를 적용하여 측정하느냐에 따라 분산이 달라지게 되므로 이미지의 잡음 제거에 영향을 미치게 된다. 이에 본 논문은 위너 필터에 적용되는 필터를 기존의 정사각형 모양(square-shaped)과 제안하는 십자가 모양(cross-shaped)을 각각 적용하여 이미지의 잡음을 제거하였다.

  • PDF

웨이블릿 변환을 사용한 영상의 노이즈 제거 (A Research of Image's Denoising using wavelet transform)

  • 김철기;강이철;김강석;차의영
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 봄 학술발표논문집 Vol.27 No.1 (B)
    • /
    • pp.529-531
    • /
    • 2000
  • 웨이블릿 디노이징 기법은 웨이블릿 계수들의 thresholding 에 의해 부가적인 가우시안 노이즈들을 제가하는데 사용된다. 필터에 기반한 다른 많은 변환들처럼, 웨이블릿 scaling 방법들은 이미지의 경계선들의 근처에 블러링 현상이나 인공적인 잡음들이 나타나게 된다. 본 논문에서 구현하고자 하는 웨이블릿 변환 필터의 구현 배경은 경계선 부분의 손실없이 이미지의 노이즈 제거를 위한 것이다. 많은 이미지 향상과 회복기법들은 이러한 붕괴처리의 효과들을 위한 보상으로 개발되었다. 또한 뉴럴 필터, 퍼지 필터, LMS L-filter, quadratic filter, sigma filter 등은 이러한 이미지의 질을 개선하기 위한 수학적인 도구들이라고 할 수 있다. [1]

  • PDF

Contourlet의 이변수 가우시안 모델을 이용한 영상의 잡음 감소 (Image Denoising Using Bivariate Gaussian Model in Contourlet Transform Domain)

  • 김윤아;김아람;양세정;이병욱
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2011년도 추계학술대회
    • /
    • pp.321-324
    • /
    • 2011
  • 본 논문에서는 contourlet 변환을 이용하여 잡음을 제거하는 방법을 제안한다. 영상 센서의 발전으로 이미지의 해상도가 좋아지는 반면 잡음에 민감해진다. 그러므로 이를 전처리 단계에서 처리해주는 것이 필요하다. 잡음은 주로 자연 영상의 윤곽선에서 민감하게 반응하기 때문에 고주파대의 잡음을 최대한 정확하게 제거하는 과정이 중요하다. Contourlet 변환은 기존의 wavelet 변환의 다중 스케일과 더불어 다양한 방향 필터뱅크를 이용하여 방향 성분에 대하여 풍부한 정보를 얻을 수 있는 변환이다. 영상의 화이트 가우시안 잡음을 제거하기 위해 contourlet 변환 영역에서의 계수를 이변수 가우스 확률 모델로 설정하고 Bayes 추정법을 사용한다. Bayes 추정법에 필요한 파라미터들은 근사적으로 추정한다. 제안한 방식을 통하여 잡음이 제거된 영상에 추가적으로 Wiener filter와 cycle-spinning을 적용하여 더 높은 PSNR (peak signal-to-noise ratio)값을 얻을 수 있다. 모의실험을 통해 제안한 방식의 PSNR 값과 결과영상으로 성능이 우수함을 확인하였다.

  • PDF

뉴로-퍼지 논리를 이용한 원자력발전소의 열출력 평가 (Nuclear Thermal Power Estimation Using the Neuro-Fuzzy Logic)

  • 나만균;민봉근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2995-2997
    • /
    • 2000
  • 원자력발전소의 열출력 계산 결과에 가장 큰 영향을 미치는 변수는 주급수 유량이며, 측정방식상의 특성(Venturi Fouling)으로 인해 계산시 과다하게 반영될 소지가 있다 본 연구에서는 이 측정 오차를 최소화하기 위하여 뉴로-퍼지 논리를 이용하여 주급수 유량을 예측한 후 그 결과를 통해 열출력을 재평가하고자 하였다. 즉, 뉴로-퍼지로의 입력 변수(증기발생기 압력 및 수위. 터빈 충동실 압력)들은 모의훈련으로 출력을 상승시키면서 취득한 후 Wavelet Denoising 기법을 이용하여 노이즈를 제거시키고. 뉴로-퍼지 추론 계통의 파라메타들을 최적화시키기 위하여 유전적 알고리듬 및 최소자승법에 의한 Hybrid Learning Rule을 이용하여 학습시켰다. 시뮬레이션을 수행한 결과, 주급수 유량이 양호하게 예측되어, 이 결과를 토대로 열출력을 평가하는데 본 알고리듬의 적용이 성공적임을 입증하였다.

  • PDF

Methods and Systems for High-temperature Strain Measurement of the Main Steam Pipe of a Boiler of a Power Plant While in Service

  • Guang, Chen;Qibo, Feng;Keqin, Ding
    • Journal of the Optical Society of Korea
    • /
    • 제20권6호
    • /
    • pp.770-777
    • /
    • 2016
  • It has been a challenge for researchers to accurately measure high temperature creep strain online without damaging the mechanical properties of the pipe surface. To this end, a noncontact method for measuring high temperature strain of a main steam pipe based on digital image correlation was proposed, and a system for monitoring of high temperature strain was designed and developed. Wavelet thresholding was used for denoising measurement data. The sub-pixel displacement search algorithm with curved surface fitting was improved to increase measurement accuracy. A field test was carried out to investigate the designed monitoring system of high temperature strain. The measuring error was less than $0.4ppm/^{\circ}C$, which meets actual measurement requirements for engineering. Our findings provide a new way to monitor creep damage of the main steam pipe of a boiler of an ultra-supercritical power plant in service.