• Title/Summary/Keyword: Wavelet basis

Search Result 143, Processing Time 0.027 seconds

Time Delay Estimation using Wavelet Transform (웨이블릿 변환을 이용한 시간 지연 추정법)

  • Kim Doh-Hyoung;Park Youngjin
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.165-168
    • /
    • 2000
  • A fast estimation method using wavelet transform for a time delay system is proposed. Main point of this method is to get the wavelet transform of the correlation between the input signal and delayed signal using transformed signals. But wavelet transform using Haar wavelet functions has basis with different phases and can offers a bisection method to estimate a time delay of a signal. Selective computation of the transform of correlation is performed and the computational complexity is reduced. Computational order of this method is O(N log N) and it is much love. than a simple correlation esimation when the length of signal is long.

  • PDF

Algorithm for Detection of Fire Smoke in a Video Based on Wavelet Energy Slope Fitting

  • Zhang, Yi;Wang, Haifeng;Fan, Xin
    • Journal of Information Processing Systems
    • /
    • v.16 no.3
    • /
    • pp.557-571
    • /
    • 2020
  • The existing methods for detection of fire smoke in a video easily lead to misjudgment of cloud, fog and moving distractors, such as a moving person, a moving vehicle and other non-smoke moving objects. Therefore, an algorithm for detection of fire smoke in a video based on wavelet energy slope fitting is proposed in this paper. The change in wavelet energy of the moving target foreground is used as the basis, and a time window of 40 continuous frames is set to fit the wavelet energy slope of the suspected area in every 20 frames, thus establishing a wavelet-energy-based smoke judgment criterion. The experimental data show that the algorithm described in this paper not only can detect smoke more quickly and more accurately, but also can effectively avoid the distraction of cloud, fog and moving object and prevent false alarm.

A Study on the Improvement of Wavelet-Based Best-Basis Algorithm for Image Compression (영상압축을 위한 웨이브릿 기반 Best-Basis 알고리즘의 개선에 관한 연구)

  • 안종구;추형석;박제선
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.10
    • /
    • pp.591-597
    • /
    • 2003
  • In this paper, a best-basis selection algorithm that improves the performance of the coding gains and the computational complexity is proposed. The proposed algorithm limits the computational complexity according to the resolved threshold value and decomposes the parent subbands by using the top-down tree search and the relative energy between the parent subbands and the child subbands. For the experiments of the proposed algorithm, the bit-rates, the peak signal-to-noise ratio (PSNR), and the reconstructed images are presented by using the Quad-tree coder. The result of the proposed algorithm is compared to that of DWT algorithm using the Quad-tree coder for a set of standard test images. In addition, the result of the proposed algorithm is compared to that of JPEG-2000 algorithm and that of S+P algorithm.

A Study on TCVQ Using Orthogonal Spline Wavelet (직교 스플라인 웨이브렛 변환을 이용한 TCVQ 설계에 관한 연구)

  • 류중일;김인겸;김성만;정현민;박규태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.11
    • /
    • pp.1383-1392
    • /
    • 1995
  • In this paper, the method to incorporate TCVQ(Trellis Copded Vector Quantizer) into the encoding of the wavelet trans formed(WT) image followed by a variable length coding(VLC) or an entropy coding(EC) is considered. By WT, an original image is separated into 10 bands with various resolutions and directional components. TCVQ used to compress these WT coefficients is a finite state machine that encodes the input source on the basis of the current input and the current state. Wavelet basis used in this paper is designed by orthogonal spline function. A modified set partitioning algorithm to Wang's is also presented. A simple modification to Wang's algorithm gives a highly time-efficient result. Proposed WT-TCVQ encoder shows a very competitive result, giving 37.46dB in PSNR at 1.002bpp when encoding 512$\times$512 LENA.

  • PDF

WAVELET-BASED FOREST AREAS CLASSIFICATION BY USING HIGH RESOLUTION IMAGERY

  • Yoon Bo-Yeol;Kim Choen
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.698-701
    • /
    • 2005
  • This paper examines that is extracted certain information in forest areas within high resolution imagery based on wavelet transformation. First of all, study areas are selected one more species distributed spots refer to forest type map. Next, study area is cut 256 x 256 pixels size because of image processing problem in large volume data. Prior to wavelet transformation, five texture parameters (contrast, dissimilarity, entropy, homogeneity, Angular Second Moment (ASM≫ calculated by using Gray Level Co-occurrence Matrix (GLCM). Five texture images are set that shifting window size is 3x3, distance .is 1 pixel, and angle is 45 degrees used. Wavelet function is selected Daubechies 4 wavelet basis functions. Result is summarized 3 points; First, Wavelet transformation images derived from contrast, dissimilarity (texture parameters) have on effect on edge elements detection and will have probability used forest road detection. Second, Wavelet fusion images derived from texture parameters and original image can apply to forest area classification because of clustering in Homogeneous forest type structure. Third, for grading evaluation in forest fire damaged area, if data fusion of established classification method, GLCM texture extraction concept and wavelet transformation technique effectively applied forest areas (also other areas), will obtain high accuracy result.

  • PDF

The Detection of Voltage Sag using Wavelet Transform (웨이브렛 변환을 이용한 Voltage Sag 검출)

  • Kim, Cheol-Hwan;Go, Yeong-Hun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.9
    • /
    • pp.425-432
    • /
    • 2000
  • Wavelet transform is a new method fro electric power quality analysis. Several types of mother wavelets are compared using voltage sag data. Investigations on the use of some mother wavelets, namely Daubechies, Symlets, Coiflets, Biorthogonal, are carried out. On the basis of extensive investigations, optimal mother wavelets for the detection of voltage sag are chosen. The recommended mother wavelet is 'Daubechies 4(db4)' wavelet. 'db4', the most commonly applied mother wavelet in the power quality analysis, can be used most properly in disturbance phenomena which occurs rapidly for a short time. This paper presents a discrete wavelet transform approach for determining the beginning time and end time of voltage sags. The technique is based on utilising the maximum value of d1(at scale 1) coefficients in multiresolution analysis(MRA) based on the discrete wavelet transform. The procedure is fully described, and the results are compared with other methods for determining voltage sag duration, such as the RMS voltage and STFT(Short-Time Fourier Transform) methods. As a result, the voltage sag detection using wavelet transform appears to be a reliable method for detecting and measuring voltage sags in power quality disturbance analysis.

  • PDF

Image Compression and Edge Detection Based on Wavelet Transforms (웨이블릿 기반의 영상 압축 및 에지 검출)

  • Jung il Hong;Kim Young Soon
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.1
    • /
    • pp.19-26
    • /
    • 2005
  • The basis function of wavelet transform used in this paper is constructed by using lifting scheme, which is different from general wavelet transform. Lifting scheme is a new biorthogonal wavelet con-structing method, that does not use Fourier transform for constructing its basis function. In this paper, an image compression and reconstruction method using the lifting scheme was proposed. And this method improves data visualization by supporting a partial reconstruction and a local reconstruction. Approx- imations at various resolutions allow extracting various sizes of feature from an image or signal with a small amount of original information. An approximation with small size of scaling coefficients gives a brief outline of features at fast. Image compression and edge detection techniques provide good frame- works for data management and visualization in multimedia database.

  • PDF

Noise Reduction of Digital Image Using Wavelet Coefficient (웨이블릿 계수를 이용한 디지털영상에서의 잡음제거)

  • 남현주;최승권;신승수;조용환
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2003.05a
    • /
    • pp.376-382
    • /
    • 2003
  • Recently, there have been many types of wavelet transformations proposed to remove the noise from an signal and image data By using feature of seperating the noise from the original image the Wavelet transformations can retain the edges of the images The wavelet analysis is complete when the basis function is coded into the wavelet This Thesis describes a method of using wavelet transformation to remove the noise from an image signal. Although the wavelet transformation proposed by Donoho and Johnstone works, it does not reliably remove all the noise from the images. So this thesis propose an algorithm that selected Wavelet Shrinkgae and threshold according to the features of bands and amplitude of noise.

  • PDF

Application of wavelet multiresolution analysis and artificial intelligence for generation of artificial earthquake accelerograms

  • Amiri, G. Ghodrati;Bagheri, A.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.2
    • /
    • pp.153-166
    • /
    • 2008
  • This paper suggests the use of wavelet multiresolution analysis (WMRA) and neural network for generation of artificial earthquake accelerograms from target spectrum. This procedure uses the learning capabilities of radial basis function (RBF) neural network to expand the knowledge of the inverse mapping from response spectrum to earthquake accelerogram. In the first step, WMRA is used to decompose earthquake accelerograms to several levels that each level covers a special range of frequencies, and then for every level a RBF neural network is trained to learn to relate the response spectrum to wavelet coefficients. Finally the generated accelerogram using inverse discrete wavelet transform is obtained. An example is presented to demonstrate the effectiveness of the method.

Wavelet-Based Face Recognition by Divided Area (웨이브렛을 이용한 공간적 영역분할에 의한 얼굴 인식)

  • 이성록;이상효;조창호;조도현;이상철
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2307-2310
    • /
    • 2003
  • In this paper, a method for face recognition based on the wavelet packet decomposition is proposed. In the proposed method, the input image is decomposed by the 2-level wavelet packet transformation and then the face areas are defined by the Integral Projection technique applied to each of the 1-level subband images, HL and LH. After the defined face areas are divided into three areas, called top, bottom, and border, the mean and the variance of the three areas of the approximation image are computed, and the variance of the single predetermined face area for the rest of 15 detail images, from which the feature vectors of statistical measure are extracted. In this paper we use the wavelet packet decomposition, a generalization of the classical wavelet decomposition, to obtain its richer signal analysis features such as discontinuity in higher derivatives, self-similarity, etc. And we have shown that even with very simple statistical features such as mean values and variance we can make an excellent basis for face classification, if an appropriate probability distance is used.

  • PDF