• Title/Summary/Keyword: Wavelet 변환

Search Result 1,517, Processing Time 0.028 seconds

Wavelet Analysis of Plate Waves in Anisotropic Laminates and Acoustic Source Location (Wavelet 변환을 이용한 이방성 적층판의 판파 해석과 음원 위치 결정)

  • 장영수;정현조
    • Composites Research
    • /
    • v.13 no.1
    • /
    • pp.61-68
    • /
    • 2000
  • A new approach is presented for the analysis of transient waves propagating in anisotropic composite laminates. The wavelet transform (WT) using the Gabor wavelet is applied to the time-frequency analysis of dispersive flexural waves. It is shown that the peaks of the magnitude of WT in time-frequency domain is related to the arrival times of group velocity. Experiments are performed using a lead break as the simulated fracture source on the surface of quasi-isotropic and unidirectional laminates. For predictions of the dispersion of the flexural mode, Mindlin plate theory is shown to give good agreement with the experimental results. Based on the frequency-dependent arrival times and angular dependence of group velocities of flexural waves, the problem of source location in anisotropic laminates is considered and the results are given.

  • PDF

A Study on the Wavelet Transform of Acoustic Emission Signals Generated from Fusion-Welded Butt Joints in Steel during Tensile Test and its Applications (맞대기 용접 이음재 인장시험에서 발생한 음향방출 신호의 웨이블릿 변환과 응용)

  • Rhee, Zhang-Kyu
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.1
    • /
    • pp.26-32
    • /
    • 2007
  • This study was carried out fusion-welded butt joints in SWS 490A high strength steel subjected to tensile test that load-deflection curve. The windowed or short-time Fourier transform(WFT or STFT) makes possible for the analysis of non-stationary or transient signals into a joint time-frequency domain and the wavelet transform(WT) is used to decompose the acoustic emission(AE) signal into various discrete series of sequences over different frequency bands. In this paper, for acoustic emission signal analysis to use a continuous wavelet transform, in which the Gabor wavelet base on a Gaussian window function is applied to the time-frequency domain. A wavelet transform is demonstrated and the plots are very powerful in the recognition of the acoustic emission features. As a result, the technique of acoustic emission is ideally suited to study variables which control time and stress dependent fracture or damage process in metallic materials.

A Study on the Wavelet Transform of Acoustic Emission Signals Generated from Fusion-Welded Butt Joints in Steel during Tensile Test and its Applications (맞대기 용접 이음재 인장시험에서 발생한 음향방출 신호의 웨이블릿 변환과 응용)

  • Rhee Zhang-Kyu;Yoon Joung-Hwi;Woo Chang-Ki;Park Sung-Oan;Kim Bong-Gag;Jo Dae-Hee
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.342-348
    • /
    • 2005
  • This study was carried out fusion-welded butt joints in SWS 490A high strength steel subjected to tensile test that load-deflection curve. The windowed or short-time Fourier transform (WFT or SIFT) makes possible for the analysis of non-stationary or transient signals into a joint time-frequency domain and the wavelet transform (WT) is used to decompose the acoustic emission (AE) signal into various discrete series of sequences over different frequency bands. In this paper, for acoustic emission signal analysis to use a continuous wavelet transform, in which the Gabor wavelet base on a Gaussian window function is applied to the time-frequency domain. A wavelet transform is demonstrated and the plots are very powerful in the recognition of the acoustic emission features. As a result, the technique of acoustic emission is ideally suited to study variables which control time and stress dependent fracture or damage process in metallic materials.

  • PDF

Automatic TFT-LCD Mura Defect Detection using Gabor Wavelet Transform and DCT (가버 웨이블렛 변환 및 DCT를 이용한 자동 TFT-LCD 패널 얼룩 검출)

  • Cho, Sang-Hyun;Kang, Hang-Bong
    • Journal of Broadcast Engineering
    • /
    • v.18 no.4
    • /
    • pp.525-534
    • /
    • 2013
  • Recently, mura defect inspection techniques are receiving attention in LCD production procedure since demands of TFT-LCD are growing. In this paper, we propose an automatic mura defect inspection method using gabor wavelet transform and DCT. First, we generate a reference panel image using DCT based method. For original panel image and generated reference panel image, we apply a gabor wavelet transform to eliminate texture information in images. Then, we extract mura defect regions from the difference image between gabor wavelet transform image of original panel and generated reference panel image. Finally, all mura defect regions are quantified to detect accurate mura defects. Experimental results show that our method is more accurate and efficient than previous methods.

A Study on Frequency-Time Plane Analysis of Wavelet (웨이브렛의 주파수-시간 평면 해석에 관한 연구)

  • Bae, Sang-Bum;Ryu, Ji-Goo;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.451-454
    • /
    • 2005
  • Recently, many methods to analyze signal have been proposed and representative methods are the Fourier transform and wavelet transform. In these methods, the Fourier transform represents signal with combination cosine and sine at all locations in the frequency domain. However, it doesn't provide time information that particular frequency occurs in signal and depends on only the global feature of the signal. So, to improve these points the wavelet transform which is capable of multiresolution analysis has been applied to many fields such as speech processing, image processing and computer vision. And the wavelet transform, which uses changing window according to scale parameter, presents time-frequency localization. In this paper, we proposed a new approach using a wavelet of cosine and sine type and analyzed features of signal in a limited point of frequency-time plane.

  • PDF

Extraction of Nonlinear Dynamical Component by Wavelet Transform in Hydro-meteorological Data (수문기상자료의 웨이블렛 변환에 의한 비선형 동역학적 성분의 추출)

  • Jin, Young-Hoon;Park, Sung-Chun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5B
    • /
    • pp.439-446
    • /
    • 2006
  • In the present study, we applied wavelet transform to decompose the hydro-meteorological data such as precipitation and temperature into the components with different return periods with a primary objective for extraction of nonlinear dynamical component. For the transform, we used the Daubechies wavelet of order 9 ('db9') as a basis function. Also, we applied the correlation dimension analysis to determine whether or not the detail and approximation components at the respective decomposition stage with the increasing of scale in the wavelet transform reveal the nonlinear dynamical characteristics. In other words, we proposed the combined use of the wavelet transform and the correlation dimension analysis as methodology to extract the nonlinear dynamical component from the hydro-meteorological data. The derived result has shown the method proposed in the present study is suitable for the segregation and extraction of the nonlinear dynamical component which is, in general, difficult to reveal by using the raw data.

Medical Image Enhancement Using an Adaptive Weight and Threshold Values (적응적 가중치와 문턱치를 이용한 의료영상의 화질 향상)

  • Kim, Seung-Jong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.5
    • /
    • pp.205-211
    • /
    • 2012
  • By using an adaptive threshold and weight based on the wavelet transform and Haar transform, a novel image enhancement algorithm is proposed. First, a medical image was decomposed with wavelet transform and all high-frequency sub-images were decomposed with Haar transform. Secondly, noise in the frequency domain was reduced by the proposed soft-threshold method. Thirdly, high-frequency coefficients were enhanced by the proposed weight values in different sub-images. Then, the enhanced image was obtained through the inverse Haar transform and wavelet transform. But the pixel range of the enhanced image is narrower than a normal image. Lastly, the image's histogram was stretched by nonlinear histogram equalization. Experiments showed that the proposed method can be not only enhance an image's details but can also preserve its edge features effectively.

Classification of Epileptic Seizure Signals Using Wavelet Transform and Hilbert Transform (웨이블릿 변환과 힐버트 변환을 이용한 간질 파형 분류)

  • Lee, Sang-Hong
    • Journal of Digital Convergence
    • /
    • v.14 no.4
    • /
    • pp.277-283
    • /
    • 2016
  • This study proposed new methods to classify normal and epileptic seizure signals from EEG signals using peaks extracted by wavelet transform(WT) and Hilbert transform(HT) based on a neural network with weighted fuzzy membership functions(NEWFM). This study has the following three steps for extracting inputs for NEWFM. In the first step, the WT was used to remove noise from EEG signals. In the second step, the HT was used to extract peaks from the wavelet coefficients. We also selected the peaks bigger than the average of peaks to extract big peaks. In the third step, statistical methods were used to extract 16 features used as inputs for NEWFM from peaks. The proposed methodology shows that accuracy, specificity, and sensitivity are 99.25%, 99.4%, 99% with 16 features, respectively. Improvement in feature selection method in view to enhancing the accuracy is planned as the future work for selecting good features from 16 features.

Wheel Loading Diagnosis and De-noising by Wavelet Transform (Wavelet 변환에 의한 숫돌로딩 진단과 노이즈 제거)

  • Yang, J.Y.;Ha, M.K.;Kwak, J.S.;Park, H.M.;Lee, S.J.
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.1 no.1
    • /
    • pp.29-37
    • /
    • 2002
  • The wavelet transform is a popular tool for studying intermittent and localized phenomena in signals. In this study the wavelet transform of cutting force signals was conducted for the diagnosis of grinding conditions in grinding process. We used the Daubechies wavelet analyzing function to detect a sudden change in cutting signal level. STD11 workpiece was 85 times of machined pieces cut by the WA wheel and a tool dynamometer obtained cutting force signals. From the results of the wavelet transform, the obtained signals were divided into approximation terms and detailed terms. At dressing time, the approximation signals were slowly increased and 45 machined times noticed dressing time.

  • PDF

Detection of Tool Failure by Wavelet Transform (Wavelet 변환을 이용한 공구파손 검출)

  • Yang, J.Y.;Ha, M.K.;Koo, Y.;Yoon, M.C.;Kwak, J.S.;Jung, J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1063-1066
    • /
    • 2002
  • The wavelet transform is a popular tool for studying intermittent and localized phenomena in signals. In this study the wavelet transform of cutting force signals was conducted for the detection of a tool failure in turning process. We used the Daubechies wavelet analyzing function to detect a sudden change in cutting signal level. A preliminary stepped workpiece which had intentionally a hard condition was cut by the inserted cermet tool and a tool dynamometer obtained cutting force signals. From the results of the wavelet transform, the obtained signals were divided into approximation terms and detailed terms. At tool failure, the approximation signals were suddenly increased and the detailed signals were extremely oscillated just before tool failure.

  • PDF