전기화재의 원인중의 하나는 직렬 아크이다. 최근까지 아크 신호를 검출하기 위해 다양한 기법들이 진행되고 있다. 시간 신호에 푸리에 변환, 웨이블릿, 또는 통계적 특징 등을 활용하여 아크 검출을 하는 방법들이 소개되었지만, 다양한 불규칙 아크 파형 때문에, 실제 환경에서는 아크 성능이 저하되는 문제가 있다. 따라서, 기존의 부족한 특징 데이터를 증가시켜, 성능을 개선하는 것이 요구된다. 본 논문에서는 입력신호를 변분 모드 분할을 통해 원신호를 분할한 후 통계적 특징을 추출한다. 변분 모드 분할으로부터 추출한 통계적 특징의 성능이 원신호로부터 얻은 특징보다 개선된 성능을 얻는다. 아크 분류기로 인공 신경망을 이용하고, 14,000개의 학습 데이터에 적용한 결과 VMD의 사용이 약 4%의 아크 검출 성능을 높혔다.
아두이노와 저가형 생체신호 증폭기를 사용하여 시선추적실험을 실시하고 결과를 분석하였다. 본 연구에서는 간단한 4방향의 시선이동 인식실험과 함께, 시선을 사용하여 영어 알파벳 등을 직접 쓰는 eye-writing 인식실험을 함께 진행함으로, 새롭게 구성한 안구전도 측정장치의 실용성을 평가하고, 더 나아가 저가형 안구전도 장치가 eye-writing과 같은 복잡한 사람-컴퓨터간 상호작용도구로 활용될 수 있는지를 분석하였다. 실험을 위해서 PSL-iEOG와 아두이노를 사용하는 저가형 안구전도 측정장치가 구성되었으며, 패턴분류를 위해 dynamic positional warping과 웨이블릿 변환이 사용되었다. 실험 결과, 저가형 측정장치는 비교적 단순한 알고리즘만으로도 외부 잡음이 유입되지 않은 경우 90%에 가까운 정확도로 시선방향을 인식할 수 있었으며, eye-writing의 경우에도 5개 패턴에 대해서 90%의 중위 정확도를 달성할 수 있었다. 그러나 패턴의 숫자가 증가함에 따라 정확도가 매우 감소하여, 다양한 패턴의 직접적인 입력이라는 eye-writing의 장점을 부각하기 위해서는 저가형 장치에 특화된 알고리즘의 개발 등 추가적인 연구가 필요할 것으로 여겨진다.
본 논문에서는 초고해상도를 갖는 복소 홀로그램을 압축하기 위한 전용 코덱에서 SPIHT (set partitioning in hierarchical trees)를 사용할 경우에 발생할 수 있는 문제점을 해결하기 위한 방법을 제안한다. 복소 홀로그램을 위한 코덱의 개발은 크게 전용 압축 방법을 만드는 방법과 HEVC 및 JPEG2000과 같은 앵커 코덱을 이용하고 전후처리 기법을 추가하는 방법으로 구분될 수 있다. 전용 압축 방법을 만드는 경우에 복소 홀로그램의 공간적인 특성을 해석하기 위한 별도의 변환 도구가 필요하다. EZW와 SPIHT 같은 부대역 단위의 제로트리 기반의 알고리즘들은 고해상도의 영상에 대해서 코딩할 경우에 비트스트림 제어 시 온전한 부대역의 정보가 제대로 전송되지 못하는 문제점을 갖는다. 본 논문에서는 이와 같은 문제를 해결하기 위한 웨이블릿 부대역의 분할 방법을 제안한다. 분할한 부대역을 각각 압축하는 것으로 부대역 전역의 정보가 균일하게 유지하도록 한다. 제안하는 방법은 기존 방법에 비하여, PSNR 대비 더 좋은 복원 결과를 보여주었다.
영상을 이용한 기계학습 기반의 나비 종 인식 기술은 나비 종의 다양성 및 개체 수, 종의 서식 분포 등을 파악하는데 관련 분야 종사자의 많은 시간과 비용 감소의 효과를 가져온다. 나비 종 분류의 정확성과 시간 효율을 높이기 위해 기계학습 모델의 입력으로 사용되는 여러 가지 특징들이 연구되었다. 그중 엔트로피 개념을 이용한 가지 길이 유사성 엔트로피나 색채 강도 엔트로피 방법이 푸리에 변환이나 웨이블릿 등 다른 특징들에 비해 높은 정확성과 적은 학습 시간을 보여주었다. 본 논문은 나비의 컬러 영상에 대한 RGB 색채 강도 엔트로피를 이용한 특징 추출 알고리즘을 제안한다. 또한 제안한 특징 추출 방법과 대표적인 앙상블 모델들을 결합한 나비 인식 시스템을 개발하고 성능을 평가한다.
본 논문은 다양한 영상 획득 과정에서 발생하는 에일리어싱 성분과 잡음을 동시에 제거하기 위하여 공간-주파수 분석 기반사전 학습(dictionary learning)을 사용한 방향 적응적 영상 개선 알고리듬을 제안한다. 제안된 기술은 i) 학습된 사전과 결합된 웨이블릿-푸리에 변환을 이용하여 에일리어싱 및 잡음 영역을 검출하는 단계와, ii) 검출된 영역에서 방향 적응적 계수 축소기법을 이용하여 에일리어싱을 제거하는 동시에 잡음을 억제하는 단계로 구성된다. 제안한 방법은 공간-주파수 성분을 동시에 분석하여 특정 위치와 특정 주파수 성분을 선택적으로 제거하기 때문에, 검출된 영역에서 에지 성분을 보존하면서 에일리어싱 제거와 잡음 억제를 가능하게 한다. 실험 결과를 근거로 제안된 방법은 기존 알고리듬들과 비교할 때 주요 고주파 성분들의 억제 및 아티펙트 발생을 최소화하며 에일리어싱과 잡음을 제거함으로써 디지털 영상의 리샘플링, 초고해상도 영상 생성, 로봇비전 등과 같은 다양한 영상 획득 장치에 적용될 수 있다.
압축센싱은 신호의 성긴 (Sparse) 성질을 활용하여 Nyquist 표본화율 보다 낮은 측정 율만으로도 신호의 완벽 복원이 가능하다는 측면에서 새로운 샘플링 기술로 주목 받고 있다. 블록기반의 압축센싱 기술을 사용하여 영상을 샘플링 하는 경우, 측정신호 영역에서도 공간 영역의 유사도가 보존되므로, 본 논문에서는 블록기반 압축센싱 기술을 사용하여 획득한 자연영상의 측정 신호에 대한 새로운 부호화 기술을 제안한다. 측정신호 간 유사성을 제거하기 위해 이산 웨이블릿 변환(DWT)을 적용한 후, 각 DWT 계수에 적절한 양자화를 수행한다. 이를 통해, 측정 신호 내의 중복성을 제거하고, 측정 신호의 비트 율 또한 절약할 수 있었다. 실험 결과, 기존의 블록기반 평활 Projected Landweber 알고리즘에 스칼라 양자화를 적용한 방법, DPCM 방법을 적용한 방법, 그리고 Multihypothesis 기반 블록기반 평활알고리즘에 DPCM을 적용한 방법과 비교할 때, 제안방법의 PSNR이 각각 최대 4dB, 0.9dB, 그리고 2.5dB 더 높은 성능을 보이는 것을 확인 할 수 있었다.
본 논문에서는 하드웨어 효율이 100%가 되는 2차원 이산 웨이블렛 변환 필터 구조를 제안한다. 전체 구조는 두 채널 QMF PR Lattice 필터로 구성된 1차원 DWT 필터 4개로 구성되었다. 1 레벨부터 J 레벨까지 순차적으로 수행함으로써 메모리 사용을 최소화 하면서도 하드웨어 효율이 100%가 되도록 설계하였으며 필터 입력 데이터를 구성해주는 DFC구조와 DCU구조를 제안하였다. 인접한 4개의 데이터를 동시에 입력 받아 처리함으로써 동시에 행방향과 열방향 DWT를 수행하므로 $N{\times}N$ 이미지를 처리하는데 $N^2(1-2^{-2J})/3$ 사이클이 소요되며 이 때 필요한 저장공간은 약 2MN-3N이다. 기존의 2D DWT 구조와 비교해 보았을 때 하드웨어 효율과 동작 속도가 향상되었으며 두 개의 1D DWT를 직렬로 연결하므로 임계경로를 감소시키기 위해서 최대 4 단까지 파이프라인을 적용하여 임계경로를 향상시킬 수 있다. 제안된 구조는 VerilogHDL로 모델링되고 동부아남 $0.18{\mu}m$ 표준셀로 합성되어 검증되었다.
수자원 계획 및 관리를 위한 지표 자료로서 일유량은 매우 유용하기 때문에 정확한 일유량 산정의 문제는 매우 중요하다. 그러나 우리나라의 경우 조석이나 배수 갑문 혹은 보 등에 의한 배수 영향으로 인해 수위-유량관계곡선식만으로 정상적인 유량산정이 어려운 지점이 다수 존재한다. 특히, 한강대교 지점과 같이 조석영향 구간에서 수위-유량관계곡선식에 의해 산정된 일유량은 자료에 대한 곡선식의 적합도 문제로 그 정확도가 매우 낮았다. 최근 자동유량측정에 의해 시간단위 이하의 실시간 유량이 생산되고 있고 이를 이용하여 일유량을 환산하고 있어 과거에 비해 보다 정확한 일유량 산정이 가능해 졌다. 그러나 신뢰도 있는 일유량을 안정적으로 제공하기 위해서는 보다 다양한 조건을 고려한 비교 검증 연구가 요구되는 실정이다. 이러한 배경에서 본 연구에서는 한강대교 지점과 같이 조석영향을 받는 지점의 일유량 산정방법 및 산정개념에 따른 유황의 차이와 적정성을 평가하여 보았다. 각 산정방법 및 산정개념 별로 산정된 일유량을 통해 유황을 산정하여 한강대교 지점의 일유량 산정방법에 대한 적정성을 평가하고 적절한 유황산정을 위한 목적별 대안을 제시하였다. 산정방법 별로는 기존의 수위-유량관계 곡선식으로 변환된 자료, 자동유량측정자료, 그리고 자동유량측정자료에서 조석성분을 제거한 순수 유출성분자료를 이용하여 일유량을 산정하였고, 이를 이용하여 산정된 유황에 대한 비교 분석을 실시하였다. 수위-유량관계곡선식에 의한 일유량은 수문조사연보의 자료를 이용하였고 자동유량자료를 이용한 일유량은 시자료를 평균하여 일유량으로 환산하는 방법을 사용하였다. 자동유량 자료에서 조석성분을 제거한 순수 유출성분의 추출은 웨이블릿 변환(wavelet transform)을 이용하였다. 각 방법별로 산정된 일유량을 비교한 결과 수위-유량관계곡선식에 의해 산정된 일유량이 자동 유량자료로 산정된 일유량에 비해 전반적으로 크게 나타났고, 2009년 한해 동안의 유출용적을 비교해 본 결과 18%정도 더 크게 산정되었다. 산정개념에 따른 비교에서는 조석성분 유량의 유효성 여부에 따른 유황을 비교하였으며, 조석성분 유량도 실효적 유량으로 간주한 경우 이론적 확률 분포형에 적합시켜 산정한 평균 갈수량은 15.7 ��/s(동절기 이상 거동기간인 2009년 11월 17일-12월 12일 기간을 제외하고 산정된 결과이나 불확실성은 잔존)에서 $53.2m^3/s$로 증가하였다. 따라서 유지유량의 목적상 경관용수나 생태용수가 중요한 지점으로 조석성분 유량이 이에 유효하다면, 유황산정을 위한 한강대교 지점의 일유량 산정방법은 다양한 목적에 비추어 추가적인 분석 검토가 필요할 것으로 판단된다.
본 논문에서는 신경회로망을 이용한 의료영상의 질환부위 인식방법을 제안하였다. 질환부위 인식을 위한 신경회로망은 입력층, 은닉층, 출력층으로 구성하여 적응 오차 역전파 알고리즘으로 학습하였다. 신경회로망에 입력된 의료영상의 특징 파라미터는 웨이브릿 변환에 의하여 분해된 저주파 영역을 행렬식으로 표현하여 특성 다항식의 계수값(n+1)개로 하였다. 추출된 특징 파라미터는 탄젠트시그모이드 전달함수의 범위로 정규화하여 신경회로망의 입력 벡터로 이용하였다. 제안된 방법의 타당성을 입증하기 위해서 실험에 사용된 입력 의료영상을 가지고 모사실험을 통해 질환부위의 인식률을 평가하였다. 실험 결과 4레벨 DWT로 변환된 저주파영역 행렬의 특성 다항식 계수를 탄젠트시그모이드 전달함수의 범위로 정규화하여 신경회로망의 입력 벡터로 이용했을 때 최적의 학습 횟수를 보였다. 신경회로망의 학습은 적응 오차 역전파 알고리즘을 사용하였고, 학습계수를 0.01, 모우멘텀을 0.95로 하였을 때, 위영상에 대해서는 55회, 가슴영상은 55회, CT영상은 46회, 초음파영상은 55회 그리고 혈관영상에 대해서는 157회 등의 최적의 학습 횟수를 보이며 100%의 인식률을 보였다.
전력 에너지 소비의 급격한 증가와 환경오염, 화석연료의 고갈, 그리고 고유가에 대한 에너지 자원의 대처방안으로 신재생 에너지원에 대한 연구가 진행되고 있다. 다양한 대체 에너지들 중에서 연료전지 발전은 지속적인 원료공급시 연속적으로 화학반응 에너지를 직접 전기에너지로 변환시키는 기술로서 연료비 부담이 없으며, 에너지 변환효율이 높고, 대기오염이나 폐기물 발생이 없다. 또한 소규모 구성과 복합 구성이 가능하고, 전형적인 발전시스템과 달리 기계적인 진동과 소음이 낮다. 이처럼 연료전지를 이용한 발전시스템 분야의 연구와 실용화가 진행되고 있는 실정이다. 본 논문에서는 PSCAB/EMTDC를 사용하여 삼상 380[V], 50[kW]급 연료전지 발전시스템의 모델링 및 구성된 연료전지 발전시스템의 전력신호를 웨이블릿 기법으로 분석하고, 분석된 결과를 전력품질의 관점으로 평가하여 해당 시스템의 모의 성능을 평가하고자 한다. 이를 통하여 보다 상세한 연료전지 발전 모델과 운전에 따른 문제점을 도출할 수 있으며, 특히 계통연계 시 발생하는 다양한 전력품질 및 신호 특성을 선행하여 연구할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.