• Title/Summary/Keyword: Wavelet(WT)

Search Result 115, Processing Time 0.034 seconds

Detection of epileptiform activities in the EEG using wavelet and neural network (웨이브렛과 신경 회로망을 이용한 EEG의 간질 파형 검출)

  • 박현석;이두수;김선일
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.2
    • /
    • pp.70-78
    • /
    • 1998
  • Spike detection in long-term EEG monitoring forepilepsy by wavelet transform(WT), artificial neural network(ANN) and the expert system is presented. First, a small set of wavelet coefficients is used to represent the characteristics of a singlechannel epileptic spikes and normal activities. In this stage, two parameters are also extracted from the relation between EEG activities before the spike event and EEG activities with the spike. then, three-layer feed-forward network employing the error back propagation algorithm is trained and tested using parameters obtained from the first stage. Spikes are identified in individual EEG channels by 16 identical neural networks. Finally, 16-channel expert system based on the context information of adjacent channels is introducedto yield more reliable results and reject artifacts. In this study, epileptic spikes and normal activities are selected from 32 patient's EEG in consensus among experts. The result showed that the WT reduced data input size and the preprocessed ANN had more accuracy than that of ANN with the same input size of raw data. Ina clinical test, our expert rule system was capable of rejecting artifacts commonly found in EEG recodings.

  • PDF

Power disturbance measurement system using discrete wavelet transform (이산웨이블릿을 이용한 전력외란 측정 시스템)

  • 이진목;김홍균;최재호;이상훈
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.6
    • /
    • pp.527-533
    • /
    • 2003
  • Recently, need of power stability and reliability has been increased as the spread of the sensitive electronic loads. Therefore, the power quality(PQ) problems become the hot Issue of public interest in these days. Many kinds of algorithms have been studied for the monitoring of PQ problems using the monitoring algorithms with RMS or FFT scheme, but it is still not enough to measure all of the PQ problems. This paper proposed the application of discrete wavelet transform(WT) for the PQ problems monitoring with the Introduction of WT theory, and the design of PQ monitoring data acquisition system Is described with some experimental results to verify the validity of the proposed PQ monitoring algorithm.

A Current Compensation Algorithm for a CT Saturation (CT 포화 복원 알고리즘)

  • Yi, Xiao-Li;Kang, Sang-Hee;Lee, Dong-Gyu;Kang, Yong-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.88-90
    • /
    • 2003
  • In this paper, an algorithm to compensate the distorted signals due to CT(Current Transformer) saturation is suggested. Firstly, WT(Wavelet Transform) is used to detect a start point and an end point of saturation. Filter banks which can be easily realized in real-time applications are employed in detecting CT saturation. Secondly, least-square curve fitting method is used to restore the distorted section of the secondary current. Fault simulations are performed on a power system model using EMTP(Electromagnetic Transient Program). A series of test results indicate that WT has superior detection accuracy and the proposed algorithm which shows very stable features under various levels of remanent flux is also satisfactory.

  • PDF

Effect Analysis of Load Shedding Using Wavelet Singular Value Decomposition (부하 탈락 시 Wavelet Transform과 Singular Value Decomposition을 이용한 특성 분석)

  • Gwon, Gi-Hyeon;Kim, Won-Ki;Han, Jun;Kim, Chul-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.51-52
    • /
    • 2011
  • 본 논문에서는 WT(Wavelet Transform)와 SVD(Singular Value Decomposition)기법을 결합한 WSVD(Wavelet Singular Value Decomposition)를 사용하여, 송전계통에서 부하 탈락 시 나타나는 특성 및 외란검출의 유효성을 분석하였다. WSVD 방식을 이용한 외란검출을 모의하기 위해 EMTP-RV를 이용하여 부산 및 경남 일부지역 345kV급 송전계통을 모델링하였고, 이 계통에서 부하 탈락을 모의하였다. WSVD의 계산은 MATLAB을 통해 수행하였으며, 이 결과를 바탕으로 전력계통에서 부하 탈략량의 변화에 따른 특징을 분석하였다

  • PDF

Development of Algorithm to Detect Load Shedding Using Wavelet Singular Value Decomposition (Wavelet Singular Value Decomposition을 이용한 부하 탈락 검출 알고리즘 개발)

  • Han, Jun;Kim, Won-Ki;Lee, Jae-Won;Kim, Chul-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.244-245
    • /
    • 2011
  • In this paper, the algorithm for detecting load shedding based on Wavelet Singular Value Decomposition(WSVD) is proposed. WSVD is method of signal processing which combine Wavelet Transform(WT) and Singular Value Decomposition(SVD) to analyze transients in power system. 345kV Busan transmission system is modeled by EMTP-RV and simulations according to successive change of load capability are conducted. This paper analyzes characteristics of WSVD by using simulation results and proposes algorithm for detecting load shedding.

  • PDF

Fault Detection of Synchronous Generator using Wavelet Transform (웨이브릿 변환에 의한 동기발전기의 고장검출)

  • Park, Chul-Won;Shin, Myong-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.640-641
    • /
    • 2007
  • In this paper, the discrete wavelet transform (DWT) was applied a fault detection of a synchronous generator being superior to a transient state signal analysis and being easy to real time realization. The fault signals after executing a terminal fault modeling collect using a MATLAB package, and calculate the wavelet coefficients through the process of a multi-level decomposition (MLD). The proposed algorithm of a fault detection of a generator using Daubechies WT (wavelet transform) was executed with a C language for the commend line function and for the real time realization after analyzing MATLAB's graphical interface.

  • PDF

Multispectral Image Data Compression Using Classified Prediction and KLT in Wavelet Transform Domain

  • Kim, Tae-Su;Kim, Seung-Jin;Kim, Byung-Ju;Lee, Jong-Won;Kwon, Seong-Geun;Lee, Kuhn-Il
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.204-207
    • /
    • 2002
  • The current paper proposes a new multispectral image data compression algorithm that can efficiently reduce spatial and spectral redundancies by applying classified prediction, a Karhunen-Loeve transform (KLT), and the three-dimensional set partitioning in hierarchical trees (3-D SPIHT) algorithm In the wavelet transform (WT) domain. The classification is performed in the WT domain to exploit the interband classified dependency, while the resulting class information is used for the interband prediction. The residual image data on the prediction errors between the original image data and the predicted image data is decorrelated by a KLT. Finally, the 3D-SPIHT algorithm is used to encode the transformed coefficients listed in a descending order spatially and spectrally as a result of the WT and KLT. Simulation results showed that the reconstructed images after using the proposed algorithm exhibited a better quality and higher compression ratio than those using conventional algorithms.

  • PDF

Acoustic Emission Source Location and Material Characterization Evaluation of Fiberboards (목재 섬유판의 음향방출 위치표정과 재료 특성 평가)

  • Ro Sing-Nam;Park Ik-Keum;Sen Seong-Won;Kim Yong-Kwon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.3
    • /
    • pp.96-102
    • /
    • 2005
  • Acoustic Emission(AE) technique has been applied to not only material characterization evaluation but also on-line monitoring of the structural integrity. The AE source location technique is very important to identify the source, such as crack, leak detection. Since the AE waveforms obtained from sensors are very difficult to distinguish the defect signals, therefore, it is necessary to consider the signal analysis of the transient wave-form. In this study, we have divided the region of interest into a set finite elements, and calculated the arrival time differences between sensors by using the velocities at every degree from 0 to 90. A new technique for the source location of acoustic emission in fiberboard plates has been studied by introducing Wavelet Transform(WT) do-noising technique. WT is a powerful tool for processing transient signals with temporally varying spectra. If the WT de-noising was employed, we could successfully filter out the errors of source location in fiberboard plates by arrival time difference method. The accuracy of source location appeared to be significantly improved.

ERS-1 AND CCRS C-SAR Data Integration For Look Direction Bias Correction Using Wavelet Transform

  • Won, J.S.;Moon, Woo-Il M.;Singhroy, Vern;Lowman, Paul-D.Jr.
    • Korean Journal of Remote Sensing
    • /
    • v.10 no.2
    • /
    • pp.49-62
    • /
    • 1994
  • Look direction bias in a single look SAR image can often be misinterpreted in the geological application of radar data. This paper investigates digital processing techniques for SAR image data integration and compensation of the SAR data look direction bias. The two important approaches for reducing look direction bias and integration of multiple SAR data sets are (1) principal component analysis (PCA), and (2) wavelet transform(WT) integration techniques. These two methods were investigated and tested with the ERS-1 (VV-polarization) and CCRS*s airborne (HH-polarization) C-SAR image data sets recorded over the Sudbury test site, Canada. The PCA technique has been very effective for integration of more than two layers of digital image data. When there only two sets of SAR data are available, the PCA thchnique requires at least one more set of auxiliary data for proper rendition of the fine surface features. The WT processing approach of SAR data integration utilizes the property which decomposes images into approximated image ( low frequencies) characterizing the spatially large and relatively distinct structures, and detailed image (high frequencies) in which the information on detailed fine structures are preserved. The test results with the ERS-1and CCRS*s C-SAR data indicate that the new WT approach is more efficient and robust in enhancibng the fine details of the multiple SAR images than the PCA approach.