• Title/Summary/Keyword: Wavelet(WT)

Search Result 115, Processing Time 0.032 seconds

Some precautions to consider in using wavelet transformation for damage detection analysis of plates

  • Beheshti-Aval, S.B.;Taherinasab, M.;Noori, M.
    • Smart Structures and Systems
    • /
    • v.11 no.1
    • /
    • pp.35-51
    • /
    • 2013
  • Over the last two decades Wavelet Transformation (WT) method has been widely utilized for the damage identification of structures. The main objective of this paper is to discuss and present some of common shortcomings and limitations of mathematical software, as well as other precautionary measures that need to be considered when using them for wavelet analysis applications. Due to popular usage of MATLABMATLAB(R) comparing to other mathematical tools among researchers for data processing of structural responses through WT analysis, this software was chosen for specific study. To the best of the authors' knowledge, these limitations and observations have not been previously identified or discussed in the literature. In this work, a square plate with a severe damage, in form of a crack, parallel to the left edge of the plate is selected for a pilot study. The steady state harmonic response is used for measuring the deflection shape across the line parallel to one edge and perpendicular to the damage. Several criteria and cases such as the smallest size damage that can be detected, correlation between the crack width and the number of sampling points, and the influence of the damage thickness on the accuracy of the result are investigated.

Multispectral Image Data Compression Using Classified Prediction and KLT in Wavelet Transform Domain (웨이블릿 영역에서 분류 예측과 KLT를 이용한 다분광 화상 데이터 압축)

  • 김태수;김승진;이석환;권기구;김영춘;이건일
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.4C
    • /
    • pp.533-540
    • /
    • 2004
  • This paper proposes a new multispectral image data compression algorithm that can efficiently reduce spatial and spectral redundancies by applying classified prediction, a Karhunen-Loeve transform (KLT), and the three-dimensional set partitioning in hierarchical trees (3-D SPIHT) algorithm in the wavelet transform (WT) domain. The classification is performed in the WT domain to exploit the interband classified dependency, while the resulting class information is used for the interband prediction. The residual image data on the prediction errors between the original image data and the predicted image data is decorrelated by a KLT. Finally, the 3-D SPIHT algorithm is used to encode the transformed coefficients listed in a descending order spatially and spectrally as a result of the WT and KLT. Simulation results showed that the reconstructed images after using the proposed algorithm exhibited a better quality and higher compression ratio than those using conventional algorithms.

A Study on a Seismic Detection Technology for High-speed Railway Considering Site Response Characteristics (성토 구간 지반 응답을 고려한 열차 내 지진 감지 기술 개발 연구)

  • Yoo, Mintaek;Moon, Jae Sang;Park, Byoungsun;Yoo, Byoung Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.10
    • /
    • pp.41-56
    • /
    • 2020
  • For the rapid and accurate warning, the system requires not only the sufficient number of seismometers but also the appropriate detection technique of sensor data. Instead of installing new seismometers, on-board accelerometers of the train could be utilized as alternatives. However, the data from on-board accelerometers includes train vibrations and the response of embankment site by earthquake, which are different from earthquakes measured from the seismometer. This study suggests signal analysis technique to detect earthquake from the on-board accelerometer data. The virtual on-board accelerometer data including the response of embankment site, obtained from site response analysis method, has been constructed. The constructed data has been analyzed using short time Fourier transform (STFT) and wavelet transform (WT). STFT method provides better performance to detect long-period earthquake whereas WT method is more available to detect short-period earthquake.

Application of the Wavelet transformation to denoising and analyzing the speech

  • Hung Phan Duy;Lan Huong Nguyen Thi;Ngoc Yen Pham Thi;Castelli Eric
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.249-253
    • /
    • 2004
  • Wavelet transform (WT) has attracted most engineers and scientists because of its excellent properties. The coherence of practical approach and a theoretical basis not only solves currently important problems, but also gives the potential of formulating and solving completely new problems. It has been show that multi-resolution analysis of Wavelet transforms is good solution in speech analysis and threshold of wavelet coefficients has near optimal noise reduction property for many classes of signals. This paper proposed applications of wavelet in speech processing: pitch detection, voice-unvoice (V -UV) decision, denoising with the detailed algorithms and results.

  • PDF

A Study on the Wavelet Transform of Acoustic Emission Signals Generated from Fusion-Welded Butt Joints in Steel during Tensile Test and its Applications (맞대기 용접 이음재 인장시험에서 발생한 음향방출 신호의 웨이블릿 변환과 응용)

  • Rhee, Zhang-Kyu
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.1
    • /
    • pp.26-32
    • /
    • 2007
  • This study was carried out fusion-welded butt joints in SWS 490A high strength steel subjected to tensile test that load-deflection curve. The windowed or short-time Fourier transform(WFT or STFT) makes possible for the analysis of non-stationary or transient signals into a joint time-frequency domain and the wavelet transform(WT) is used to decompose the acoustic emission(AE) signal into various discrete series of sequences over different frequency bands. In this paper, for acoustic emission signal analysis to use a continuous wavelet transform, in which the Gabor wavelet base on a Gaussian window function is applied to the time-frequency domain. A wavelet transform is demonstrated and the plots are very powerful in the recognition of the acoustic emission features. As a result, the technique of acoustic emission is ideally suited to study variables which control time and stress dependent fracture or damage process in metallic materials.

A Study on the Wavelet Transform of Acoustic Emission Signals Generated from Fusion-Welded Butt Joints in Steel during Tensile Test and its Applications (맞대기 용접 이음재 인장시험에서 발생한 음향방출 신호의 웨이블릿 변환과 응용)

  • Rhee Zhang-Kyu;Yoon Joung-Hwi;Woo Chang-Ki;Park Sung-Oan;Kim Bong-Gag;Jo Dae-Hee
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.342-348
    • /
    • 2005
  • This study was carried out fusion-welded butt joints in SWS 490A high strength steel subjected to tensile test that load-deflection curve. The windowed or short-time Fourier transform (WFT or SIFT) makes possible for the analysis of non-stationary or transient signals into a joint time-frequency domain and the wavelet transform (WT) is used to decompose the acoustic emission (AE) signal into various discrete series of sequences over different frequency bands. In this paper, for acoustic emission signal analysis to use a continuous wavelet transform, in which the Gabor wavelet base on a Gaussian window function is applied to the time-frequency domain. A wavelet transform is demonstrated and the plots are very powerful in the recognition of the acoustic emission features. As a result, the technique of acoustic emission is ideally suited to study variables which control time and stress dependent fracture or damage process in metallic materials.

  • PDF

Detection of Epileptic Seizure Based on Peak Using Sequential Increment Method (점증적 증가를 이용한 첨점 기반의 간질 검출)

  • Lee, Sang-Hong
    • Journal of Digital Convergence
    • /
    • v.13 no.10
    • /
    • pp.287-293
    • /
    • 2015
  • This study proposed signal processing techniques and neural network with weighted fuzzy membership functions(NEWFM) to detect epileptic seizure from EEG signals. This study used wavelet transform(WT), sequential increment method, and phase space reconstruction(PSR) as signal processing techniques. In the first step of signal processing techniques, wavelet coefficients were extracted from EEG signals using the WT. In the second step, sequential increment method was used to extract peaks from the wavelet coefficients. In the third step, 3D diagram was produced from the extracted peaks using the PSR. The Euclidean distances and statistical methods were used to extract 16 features used as inputs for NEWFM. The proposed methodology shows that accuracy, specificity, and sensitivity are 97.5%, 100%, 95% with 16 features, respectively.

Application of Wavelet-Based RF Fingerprinting to Enhance Wireless Network Security

  • Klein, Randall W.;Temple, Michael A.;Mendenhall, Michael J.
    • Journal of Communications and Networks
    • /
    • v.11 no.6
    • /
    • pp.544-555
    • /
    • 2009
  • This work continues a trend of developments aimed at exploiting the physical layer of the open systems interconnection (OSI) model to enhance wireless network security. The goal is to augment activity occurring across other OSI layers and provide improved safeguards against unauthorized access. Relative to intrusion detection and anti-spoofing, this paper provides details for a proof-of-concept investigation involving "air monitor" applications where physical equipment constraints are not overly restrictive. In this case, RF fingerprinting is emerging as a viable security measure for providing device-specific identification (manufacturer, model, and/or serial number). RF fingerprint features can be extracted from various regions of collected bursts, the detection of which has been extensively researched. Given reliable burst detection, the near-term challenge is to find robust fingerprint features to improve device distinguishability. This is addressed here using wavelet domain (WD) RF fingerprinting based on dual-tree complex wavelet transform (DT-$\mathbb{C}WT$) features extracted from the non-transient preamble response of OFDM-based 802.11a signals. Intra-manufacturer classification performance is evaluated using four like-model Cisco devices with dissimilar serial numbers. WD fingerprinting effectiveness is demonstrated using Fisher-based multiple discriminant analysis (MDA) with maximum likelihood (ML) classification. The effects of varying channel SNR, burst detection error and dissimilar SNRs for MDA/ML training and classification are considered. Relative to time domain (TD) RF fingerprinting, WD fingerprinting with DT-$\mathbb{C}WT$ features emerged as the superior alternative for all scenarios at SNRs below 20 dB while achieving performance gains of up to 8 dB at 80% classification accuracy.

Classification of Epileptic Seizure Signals Using Wavelet Transform and Hilbert Transform (웨이블릿 변환과 힐버트 변환을 이용한 간질 파형 분류)

  • Lee, Sang-Hong
    • Journal of Digital Convergence
    • /
    • v.14 no.4
    • /
    • pp.277-283
    • /
    • 2016
  • This study proposed new methods to classify normal and epileptic seizure signals from EEG signals using peaks extracted by wavelet transform(WT) and Hilbert transform(HT) based on a neural network with weighted fuzzy membership functions(NEWFM). This study has the following three steps for extracting inputs for NEWFM. In the first step, the WT was used to remove noise from EEG signals. In the second step, the HT was used to extract peaks from the wavelet coefficients. We also selected the peaks bigger than the average of peaks to extract big peaks. In the third step, statistical methods were used to extract 16 features used as inputs for NEWFM from peaks. The proposed methodology shows that accuracy, specificity, and sensitivity are 99.25%, 99.4%, 99% with 16 features, respectively. Improvement in feature selection method in view to enhancing the accuracy is planned as the future work for selecting good features from 16 features.

A Study on Preprocessing Method in Deep Learning for ICS Cyber Attack Detection (ICS 사이버 공격 탐지를 위한 딥러닝 전처리 방법 연구)

  • Seonghwan Park;Minseok Kim;Eunseo Baek;Junghoon Park
    • Smart Media Journal
    • /
    • v.12 no.11
    • /
    • pp.36-47
    • /
    • 2023
  • Industrial Control System(ICS), which controls facilities at major industrial sites, is increasingly connected to other systems through networks. With this integration and the development of intelligent attacks that can lead to a single external intrusion as a whole system paralysis, the risk and impact of security on industrial control systems are increasing. As a result, research on how to protect and detect cyber attacks is actively underway, and deep learning models in the form of unsupervised learning have achieved a lot, and many abnormal detection technologies based on deep learning are being introduced. In this study, we emphasize the application of preprocessing methodologies to enhance the anomaly detection performance of deep learning models on time series data. The results demonstrate the effectiveness of a Wavelet Transform (WT)-based noise reduction methodology as a preprocessing technique for deep learning-based anomaly detection. Particularly, by incorporating sensor characteristics through clustering, the differential application of the Dual-Tree Complex Wavelet Transform proves to be the most effective approach in improving the detection performance of cyber attacks.