• Title/Summary/Keyword: Waveguide analysis

Search Result 398, Processing Time 0.027 seconds

Equivalent Circuit Analysis of a Rectangular Waveguide Probe with H-type Small Aperture (H-형태 소형 개구를 갖는 도파관 탐침의 등가회로 해석)

  • Ko, Ji-Hwan;Cho, Young-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.12
    • /
    • pp.1300-1305
    • /
    • 2014
  • Equivalent circuits for the waveguide probe with H-shaped small aperture, as a key ingredient of near field microwave microscope, is described along with a working principle of the probe. Small rectangular or circular aperture in comparison with the wavelength behaves like the inductive element. So adding the ridged structure (corresponding to capacitive component) to the small aperture allows the transmission resonance to occur. For verification, we represents the equivalent circuit descriptions for the two types, ridged aperture and cavity types. The values of obtained by use of the equivalent circuit approaches are compared with those obtained by use of the available numerical software. The results are also experimentally verified.

Breakdown and Destruction Characteristics of the TTL IC by the Artificial Microwave (인위적인 전자파에 의한 TTL IC의 오동작 및 파괴 특성)

  • Hong, Joo-Il;Hwang, Sun-Mook;Huh, Chang-Su
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.5
    • /
    • pp.27-32
    • /
    • 2007
  • We investigated the damage of the TTL ICs which manufactured five different technologies by artificial microwave. The artificial microwave was rated at a microwave output from 0 to 1000W, at a frequency of 2.45GHz. The microwave power was extracted into a standard rectangular waveguide(WR-340) and TTL ICs were located into the waveguide. TTL ICs were damaged two types. One is breakdown which means no physical damage is done to the system and after a reset the system is going back into function. The other is destruction which means a physical damage of the system so that the system will not recover without a hardware repair. TTL SN74S08N and SN74ALS08N devices get a breakdown and destruction occurred but TTL SN74LS08N, SN74AS08N and 74F08N devices get a destruction occurred. Also destructed TTL ICs were removed their surface and a chip conditions were analyzed by SEM. The SEM analysis of the damaged devices showed onchipwire and bondwire destruction like melting due to thermal effect. The tested results expect to be applied to the fundamental data which interprets the combination mechanism of the semiconductors from artificial microwave environment.

Development of a Ultrasonic System for Nano-Surface Reformation Process

  • Kim, Hyunse;Lim, Euisu;Park, Jong-Kweon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.4
    • /
    • pp.365-370
    • /
    • 2017
  • In this article, a 20 kHz Titanium (Ti) ultrasonic waveguide system for a nano-surface reformation process was designed and fabricated. First, finite element analysis using ANSYS software was performed to find the optimal dimensions. The obtained anti-resonance frequency for the Ti transducer with the piezoelectric device was 20.0 kHz, which value agreed well with the experiment result of 20.1 kHz (0.5% error). To test the system, chromium molybdenum steel (SCM) 435 was chosen as a test-piece. The result proved that the reformed depth was $36{\mu}m$. In addition, hardness was measured before and after the process. The value was changed from 14 HRC to 21 HRC, which is 50% increasing rate. Finally, the friction coefficient test result showed that the surface coefficient was reduced from 0.14 to 0.10 (28.6% reduction). Based on the results, the Ti ultrasonic equipment is regarded as a useful device for nano-scale surface reformation.

Analysis of Fracture Signals from Tooth/Composite Restoration According to AE Sensor Attachment (AE 센서 부착법에 따른 치아/복합레진의 파괴 신호 분석)

  • Gu, Ja-Uk;Choi, Nak-Sam
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.5
    • /
    • pp.500-507
    • /
    • 2011
  • Acoustic emission(AE) signals during the polymerization shrinkage of composite resin subjected to the LED light exposure were detected through a wave guide method and a direct sensor attachment method. For PMMA, human tooth, stainless steel substrate, data of AE hits and amplitudes were compared. For the test using the wave guide, AE amplitudes decreased because of the attenuant wave. However, AE hits and 1st peak frequency distribution were not different according to the sensor attachments. Through the experiments, wave guide could be used for a nondestructive evaluation of the marginal disintegrative fracture of dental restoration.

AN ANALYSIS OF EMBEDDING IMPEDANCE FOR Q-BAND WAVEGUIDE GUNN OSCILLATOR WITH RESONANCE POST (공진 포스트 구조를 갖는 Q-band 도파관형 건 발진기의 임베딩 임피던스 해석)

  • 김현주;한석태;김태성;김광동;이창훈;정문희;김용기
    • Journal of Astronomy and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.119-128
    • /
    • 2001
  • The oscillation frequency tuning range of waveguide Gunn oscillator and its stability depend sensitively on the dimensions of the resonator. Therefore the embedding impedances with the various dimensions of the resonator for Q-band (33 ∼ 50 GHz) Gunn oscillator are calculated by using HFSS (High Frequency Structure Simulator). In this paper the comparisons between theoretical results of embedding impedances as a function of frequency and that of experimental results are described. And the oscillation frequency range could be predicted by using the theoretical evaluation methods which were proposed in this paper It shows that post size has an effect on the frequency tuning characteristics of Gunn oscillator.

  • PDF

Analysis of Dielectric Waveguide Gratings with a Ferrite Layer (페라이트 층을 갖는 유전체 슬랩 도파관 격자 구조의 해석)

  • Yun, Sang-Won
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.7
    • /
    • pp.8-12
    • /
    • 1989
  • In this paper, dielectric waveguide gratings, which can be applied to the nonreciprocal devices such as isolators, are proposed. Those grating structures can be considered as cascade connections of step discontinuities between uniform dielectric waveguides and another uniform dielectric waveguides with a ferrite layer. Therefore, the nonreciprocal scattering characteristics of such gratings can be obtained form the scattering characteristics of step discontinuities and uniform dielectric wave guides. For the periodic grating structures, band-reject characteristics can be located inside or outside the frequency range of interest. Numerical analyses are performed at 35GHz and experimental results at X-band are also presented.

  • PDF

Design and Analysis of Plasmonic Grating-Assisted Directional Coupler based on Silicon Waveguide (실리콘 도파로에 기초한 플리즈마 격자 구조형 방향성 결합기의 설계 및 분석)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.5
    • /
    • pp.55-60
    • /
    • 2012
  • Longitudinal transmission-line modal theory is applied to analyze maximum power transfer in plasmonic grating-assisted directional couplers (P-GADC) based on silicon waveguide. By defining a coupling efficiency amenable to rigorous analytical solutions and interference between even and odd modes, the power exchange of TE modes as a function of propagation distance is evaluated. The numerical result reveals that maximum power transfer occurs at a grating period ${\Lambda}_{eq}=10.26{\mu}m$, in which the insertion loss of supermodes is equal to each other. That is, it is generally different from conventional phase-matching condition or minium gap condition of GADC.

A study on an analysis of the impedance matching efficiency of 100 GHz band waveguide - type SIS mixer (100 GHz 대역 도파관형 SIS 믹서의 임피던스 정합 효율에 관한 해석)

  • 한석태;김효령;이창훈;박종애;정현수;김광동;김태성;박동철
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.6
    • /
    • pp.81-89
    • /
    • 1996
  • Quantum RF impedance of SIS (superconductor insulator superconductor) junction has been analyzed by using through on tucker's quantum mixer theory in the frequency range form 80 GHz to 120 GHz. The embedding impedance of waveguide-type mixer mount and its equivalent circuit have been evaluated. From these evaluated results, the impedance matching efficiency between mixer mount embedding impedance and mixer port impedance of upper-side band and IF which were determined by augmented admittance matrix with given backshort position has been discussed in detail. It is found that the mixer with fixed backshort mount ahs a impedance matching efficiency about 80% at each port of mixer within 85GHz to 115GHz, which implys a conversion los of mixer would be good enough to be operated such a wide band frequency range. Therefore, the theoretical evaluated results show that our method can be used ot design the mixer mount without any mechanical tuning elements such a backshort or an E-plane tunners for wide band operation.

  • PDF

Microwave Characteristics Analysis of TWPD′s Using the FDTD Method (FDTD를 이용한 TWPD의 마이크로파 특성 분석)

  • Gong, Sun-Cheol;Lee, Seung-Jin;Lee, Jeong-Hun;Ok, Seong-Hae;Choe, Yeong-Wan
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.4
    • /
    • pp.63-71
    • /
    • 2002
  • In this paper, we present microwave characteristics of traveling-wave photodetectors (TWPD) using the finite-difference time-domain method (FDTD). Current and voltage in the time domain are calculated by the FDTD. Also, characteristic impedance and propagation constant in frequency domain are obtained from the time-domain data. As the thickness of i-layer gets thicker and the waveguide width gets narrower, TWPD's show less microwave loss and higher velocity. The 50Ω impedance matching design is achieved for 2.4${\mu}{\textrm}{m}$ waveguide width and 1.2${\mu}{\textrm}{m}$ thickness of i-layer at 100 GHz.

Quartz Megasonic System for Cleaning Flat Panel Display (평판디스플레이 세정 용 Quartz 메가소닉 시스템)

  • Kim, Hyunse;Lee, Yanglae;Lim, Euisu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.12
    • /
    • pp.1107-1113
    • /
    • 2014
  • In this article, the megasonic cleaning system for cleaning micro/nano particles from flat panel display (FPD) surfaces was developed. A piezoelectric actuator and a waveguide were designed by finite element method (FEM) analysis. The calculated peak frequency value of the quartz waveguide was 1002 kHz, which agreed well with the measured value of 1003 kHz. The average acoustic pressure of the megasonic cleaning system was 43.1 kPa, which is three times greater than that of the conventional type of 13.9 kPa. Particle removal efficiency (PRE) tests were performed, and the cleaning efficiency of the developed system was proven to be 99%. The power consumption of the developed system was 64% lower than that of the commercial system. These results show that the developed megasonic cleaning system can be an effective solution in particle removing from FPD substrate with higher energy efficiency and lower chemical and ultra pure water (UPW) consumption.