• Title/Summary/Keyword: Wavefront distortion

Search Result 25, Processing Time 0.029 seconds

Design of an Nd:YAG Slab Structure for a High-power Zigzag Slab Laser Amplifier Based on a Wavefront Simulation

  • Shin, Jae Sung;Cha, Yong-Ho;Cha, Byung Heon
    • Current Optics and Photonics
    • /
    • v.3 no.3
    • /
    • pp.236-242
    • /
    • 2019
  • An Nd:YAG slab structure was designed for a high-power zigzag slab laser amplifier based on computational simulation of the wavefront distortion. For the simulation, the temperature distribution in the slab was calculated at first by thermal analysis. Then, the optical path length (OPL) was obtained by a ray tracing method for the corresponding refractive index variation inside the slab. After that, the OPL distribution of the double-pass amplified beam was calculated by summing the results obtained for the first and second passes. The amount of wavefront distortion was finally obtained as the peak-to-valley value of the OPL distribution. As a result of this study, the length and position of the gain medium were optimized by minimizing the transverse wavefront distortion. Under the optimized conditions, the transverse wavefront distortion of the double-pass amplified beam was less than $0.2{\mu}m$ for pump power of 14 kW.

Experimental Study of Large-amplitude Wavefront Correction in Free-space Coherent Optical Communication

  • Guo, Qian;Cheng, Shuang;Ke, Xizheng
    • Current Optics and Photonics
    • /
    • v.5 no.6
    • /
    • pp.627-640
    • /
    • 2021
  • In a free-space coherent optical communication system, wavefront distortion is frequently beyond the correction range of the adaptive-optics system after the laser has propagated through the atmospheric turbulence. A method of residual wavefront correction is proposed, to improve the quality of coherent optical communication in free space. The relationship between the wavefront phase expanded by Zernike polynomials and the mixing efficiency is derived analytically. The influence of Zernike-polynomial distortion on the bit-error rate (BER) of a phase-modulation system is analyzed. From the theoretical analysis, the BER of the system changes periodically, due to the periodic extension of wavefront distortion. Experimental results show that the BER after correction is reduced from 10-1 to 10-4; however, when the closed-loop control algorithm with residual correction is used, the experimental results show that the BER is reduced from 10-1 to 10-7.

Numerical Research on Suppression of Thermally Induced Wavefront Distortion of Solid-state Laser Based on Neural Network

  • Liu, Hang;He, Ping;Wang, Juntao;Wang, Dan;Shang, Jianli
    • Current Optics and Photonics
    • /
    • v.6 no.5
    • /
    • pp.479-488
    • /
    • 2022
  • To account for the internal thermal effects of solid-state lasers, a method using a back propagation (BP) neural network integrated with a particle swarm optimization (PSO) algorithm is developed, which is a new wavefront distortion correction technique. In particular, by using a slab laser model, a series of fiber pumped sources are employed to form a controlled array to pump the gain medium, allowing the internal temperature field of the gain medium to be designed by altering the power of each pump source. Furthermore, the BP artificial neural network is employed to construct a nonlinear mapping relationship between the power matrix of the pump array and the thermally induced wavefront aberration. Lastly, the suppression of thermally induced wavefront distortion can be achieved by changing the power matrix of the pump array and obtaining the optimal pump light intensity distribution combined using the PSO algorithm. The minimal beam quality β can be obtained by optimally distributing the pumping light. Compared with the method of designing uniform pumping light into the gain medium, the theoretically computed single pass beam quality β value is optimized from 5.34 to 1.28. In this numerical analysis, experiments are conducted to validate the relationship between the thermally generated wavefront and certain pumping light distributions.

Wavefront Distortion caused by High Energy Laser Beam in the Relay Mirrors of the Laser Beam Director (고에너지 레이저빔에 의해 유발된 광집속장치 반사경 광파면 왜곡)

  • Choi, Jong-Ho;Kim, Yeon-Soo
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.2
    • /
    • pp.144-149
    • /
    • 2008
  • Thermal distortion of the laser mirrors which are the Coude mirrors of the laser beam director and the wavefront error caused by the thermal distortion are studied. Coude mirrors consist of three relay mirrors and one fast steering mirror. The mirrors have reflectivity of 99.5% with respect to the laser wavelength of $3.8\;{\mu}m$, and absorption of 500 W per second. Thermal distortion and its related wavefront errors are studied with laser beam irradiation for 5 seconds. For the relay mirror, the wavefront error is 334 nm_PV, 98 nm rms and for fast steering mirror, $11.5\;{\mu}m$_PV, $3{\mu}m$ rms.

Optical perfornance depending on input wavefront distortion (입력광파면 왜곡에 따른 광학계 성능)

  • 김연수;김현숙;최세철;김창우;이윤우;송재봉;김병윤
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.3
    • /
    • pp.172-176
    • /
    • 2001
  • Optical performance depending on the input wavefront distortion is analyzed in terms of StreW ratio. The amplitude of wavefront distortion at the optic axis that gives the system diffraction limited optical performance is described quantatively from the analysis of the Strehl ratio, which is obtained at the image plane using the input wavefront that is characterized by low and high spatial frequency. uency.

  • PDF

WAVEFRONT SENSING TECHNOLOGY FOR ADAPTIVE OPTICAL SYSTEMS

  • Uhma Tae-Kyoung;Rohb Kyung-Wan;Kimb Ji-Yeon;Park Kang-Soo;Lee Jun-Ho;Youn Sung-Kie
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.628-632
    • /
    • 2005
  • Remote sensing through atmospheric turbulence had been hard works for a long time, because wavefront distortion due to the Earth's atmospheric turbulence deteriorates image quality. But due to the appearance of adaptive optics, it is no longer difficult things. Adaptive optics is the technology to correct random optical wavefront distortions in real time. For past three decades, research on adaptive optics has been performed actively. Currently, most of newly built telescopes have adaptive optical systems. Adaptive optical system is typically composed of three parts, wavefront sensing, wavefront correction and control. In this work, the wavefront sensing technology for adaptive optical system is treated. More specifically, shearing interferometers and Shack-Hartmann wavefront sensors are considered. Both of them are zonal wavefront sensors and measure the slope of a wavefront. . In this study, the shearing interferometer is made up of four right-angle prisms, whose relative sliding motions provide the lateral shearing and phase shifts necessary for wavefront measurement. Further, a special phase-measuring least-squares algorithm is adopted to compensate for the phase-shifting error caused by the variation in the thickness of the index-matching oil between the prisms. Shack-Hartmann wavefront sensors are widely used in adaptive optics for wavefront sensing. It uses an array of identical positive lenslets. And each lenslet acts as a subaperture and produces spot image. Distortion of an input wavefront changes the location of spot image. And the slope of a wavefront is obtained by measuring this relative deviation of spot image. Structures and measuring algorithms of each sensor will be presented. Also, the results of wavefront measurement will be given. Using these wavefront sensing technology, an adaptive optical system will be built in the future.

  • PDF

Required Performance Analysis of Wavefront Distortion System against Monopulse Radar (모노펄스 레이더에 대한 전파왜곡 시스템의 요구 성능 분석)

  • Jang, Yeonsoo;Kim, Ghiback;Park, Jintae;Lee, Changhoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.6
    • /
    • pp.577-580
    • /
    • 2016
  • One of the effective jamming methods to disturb monopulse radars is a wavefront distortion. Most well-known wavefront distortion is the cross eye technique which uses two transmitters. The cross eye can make angle error regardless of monopulse radar structure but high accuracies of phase and amplitude between two transmitters should be needed to make large angle error. Thus, the accuracies of phase and amplitude are essentially required performance parameters for implementation of wavefront distortion systems and the required values of accuracy is dependant on amount of angle error. In this paper, we derive expressions for minimum required values of phase difference and amplitude ratio according to amount of angle error and analyze the results.

Pupil plane wavefront sensing with a static pyramidal prism: Simulation and preliminary evaluation

  • Lee, Jun-Ho;Doel, A.P.;Walker, D.D.
    • Journal of the Optical Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.1-6
    • /
    • 2000
  • Adaptive optics(AO) removes or compensates the distortion caused by a turbulent atmosphere or medium. A wavefront sensormeasures the distortion, on which the correction of AO is based. A new idea of pupil plane wavefront sensing, which consists of a relay lens and a pyramidal-shaped prism, was previously proposed. This paper reviews the idea of pupil wavefrontsensing and presents prism, was previously proposed. The simulation shows that pupilwavefront sensing provides full wavefront sensing when the intensity peak of PSF is located within half of the Airy radius from the apex of the sensor. Adding to this, the sensor is shown to have optimum sensor output with a finite bevel size of the pyramidal prism.

A Study on Stability Improvement of High Energy Laser Beam Wavefront Correction System

  • Jung, Jongkyu;Lee, Sooman
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.2
    • /
    • pp.1-7
    • /
    • 2018
  • The adaptive optics for compensating for optical wavefront distortion due to atmospheric turbulence has recently been used in systems that improve beam quality by eliminating the aberrations of high power laser beam wavefront. However, unseen-mode, which can not be measured in the wavefront sensor, increases the instability of the laser beam wavefront compensator on the adaptive optics system. As a method for improving such instability, a mathematical method for limiting the number of singular values is used when generating the command matrix involved in generation of the drive command of the wavefront compensator. In the past, however, we have relied solely on experimental methods to determine the limiting range of the singular values. In this paper, we propose a criterion for determining the limiting range of the singular values using the driving characteristics and the correlation technique of the wavefront compensator's actuators and have proved its performance experimentally.

Wavefront Sensitivity Analysis Using Global Wavefront Aberration in an Unobscured Optical System

  • Joo, Won Don
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.228-235
    • /
    • 2012
  • It is very important to analyze effectively the tolerance of an optical system with high resolution as the projection lens of photolithography or as the objective lens of a microscope. We would like to find an effective assembly structure and compensators to correct aberrations through global wavefront sensitivity analysis using Zernike polynomial expansion from the field and pupil coordinates rather than from only pupil coordinates. In this paper, we introduce global wavefront coefficients by small perturbations of the optical system, and analyze the optical performance with these coefficients. From this analysis, it is possible to see how we can enlarge the tolerance through the proper assembly structure and compensators.