• Title/Summary/Keyword: Wavefront Propagation

Search Result 14, Processing Time 0.023 seconds

Numerical Research on Suppression of Thermally Induced Wavefront Distortion of Solid-state Laser Based on Neural Network

  • Liu, Hang;He, Ping;Wang, Juntao;Wang, Dan;Shang, Jianli
    • Current Optics and Photonics
    • /
    • v.6 no.5
    • /
    • pp.479-488
    • /
    • 2022
  • To account for the internal thermal effects of solid-state lasers, a method using a back propagation (BP) neural network integrated with a particle swarm optimization (PSO) algorithm is developed, which is a new wavefront distortion correction technique. In particular, by using a slab laser model, a series of fiber pumped sources are employed to form a controlled array to pump the gain medium, allowing the internal temperature field of the gain medium to be designed by altering the power of each pump source. Furthermore, the BP artificial neural network is employed to construct a nonlinear mapping relationship between the power matrix of the pump array and the thermally induced wavefront aberration. Lastly, the suppression of thermally induced wavefront distortion can be achieved by changing the power matrix of the pump array and obtaining the optimal pump light intensity distribution combined using the PSO algorithm. The minimal beam quality β can be obtained by optimally distributing the pumping light. Compared with the method of designing uniform pumping light into the gain medium, the theoretically computed single pass beam quality β value is optimized from 5.34 to 1.28. In this numerical analysis, experiments are conducted to validate the relationship between the thermally generated wavefront and certain pumping light distributions.

Analysis of Laser-protection Performance of Asymmetric-phase-mask Wavefront-coding Imaging Systems

  • Yangliang, Li;Qing, Ye;Lei, Wang;Hao, Zhang;Yunlong, Wu;Xian'an, Dou;Xiaoquan, Sun
    • Current Optics and Photonics
    • /
    • v.7 no.1
    • /
    • pp.1-14
    • /
    • 2023
  • Wavefront-coding imaging can achieve high-quality imaging along with a wide range of defocus. In this paper, the anti-laser detection and damage performance of wavefront-coding imaging systems using different asymmetric phase masks are studied, through modeling and simulation. Based on FresnelKirchhoff diffraction theory, the laser-propagation model of the wavefront-coding imaging system is established. The model uses defocus distance rather than wave aberration to characterize the degree of defocus of an imaging system. Then, based on a given defocus range, an optimization method based on Fisher information is used to determine the optimal phase-mask parameters. Finally, the anti-laser detection and damage performance of asymmetric phase masks at different defocus distances and propagation distances are simulated and analyzed. When studying the influence of defocus distance, compared to conventional imaging, the maximum single-pixel receiving power and echo-detection receiving power of asymmetric phase masks are reduced by about one and two orders of magnitude respectively. When exploring the influence of propagation distance, the maximum single-pixel receiving power of asymmetric phase masks decreases by about one order of magnitude and remains stable, and the echodetection receiving power gradually decreases with increasing propagation distance, until it approaches zero.

Error Analysis of the Passive Localization Using Near-field Effect in the Sea (해양에서 근거리효과를 이용한 수동 위치추정 오차분석)

  • 박정수;최진혁
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.75-81
    • /
    • 2001
  • In this paper we analyzed the localization error of near-field detection algorithm in the sea. The near-field detection algorithms using triangulation and wavefront curvature basically assume a signal in two dimension of bearing and range. But the assumption causes localization error because there is three dimension of bearing, range, and depth in the sea. Even through three dimensional effect is considered, the localization error is occurred if multipath propagation in the sea is ignored. To analyze the localization error in the sea, we simulate the near-field localization using acoustic propagation model and focused beamforming considering wavefront curvature. The simulation results indicate that localization error always occurs in the sea and the error varied with sound velocity profile, water depth, bottom slope, source range, etc.

  • PDF

Improving the Capture-range Problem in Phase-diversity Phase Retrieval for Laser-wavefront Measurement Using Geometrical-optics Initial Estimates

  • Li, Li Jie;Jing, Wen Bo;Shen, Wen;Weng, Yue;Huang, Bing Kun;Feng, Xuan
    • Current Optics and Photonics
    • /
    • v.6 no.5
    • /
    • pp.473-478
    • /
    • 2022
  • To overcome the capture-range problem in phase-diversity phase retrieval (PDPR), a geometrical-optics initial-estimate method is proposed to avoid a local minimum and to improve the accuracy of laser-wavefront measurement. We calculate the low-order aberrations through the geometrical-optics model, which is based on the two spot images in the propagation path of the laser, and provide it as a starting guess for the PDPR algorithm. Simulations show that this improves the accuracy of wavefront recovery by 62.17% compared to other initial values, and the iteration time with our method is reduced by 28.96%. That is, this approach can solve the capture-range problem.

Stochastic numerical study on the propagation characteristics of P-Wave in heterogeneous ground (지반의 비균질성이 탄성파 전파 특성에 미치는 영향에 대한 추계론적 수치해석 연구)

  • Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.1
    • /
    • pp.13-24
    • /
    • 2013
  • Various elastic wave-based site investigation methods have been used to characterize subsurface ground because the dynamic properties can be correlated with various geotechnical parameters. Although the inherent spatial variability of the geotechnical parameters affects the P-wave propagation characteristics, ground heterogeneity has not been considered as an influential factor. Thus, the effect of heterogeneous ground on the travel-time shift and wavefront characteristics of elastic waves through stochastic numerical analyses is investigated in this study. The effects of the relative correlation lengths and relative propagation distances on the travel-time shift of P-waves considering various intensities of ground heterogeneity were investigated. Heterogeneous ground fields of stiffness (e.g., the coefficient of variation = 10 ~ 40%) were repeatedly realized in numerical finite difference grids using the turning band method. Monte Carlo simulations were undertaken to simulate P-wave propagation in heterogeneous ground using a finite difference method-based numerical approach. The results show that the disturbance of the wavefront becomes more significant with stronger heterogeneity and induces travel-time delays. The relative correlation lengths and propagation distances are systematically related to the travel-time shift.

Verification of Wavefront Inversion Scheme via Signal Subspace Comparison Between Physical and Synthesized Array Data in SAT Imaging (SAR Imaging에서 Physical Array와 합성 Array 신호의 Subspace 비교를 통한 Wavefront Inversion 기법 입증)

  • 최정희
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.4
    • /
    • pp.34-41
    • /
    • 1999
  • Unlike the traditional radar system, Synthetic Aperture Radar(SAR) system is capable of imaging a target scene to ceertain degree of cross-range resolution. And this resolution is mainly depends on the size of aperture synthesized. Thus, a good system model and inversion scheme should be developed to actually give effect of synthesizing aperture size, which in turn gives better cross range resolution of reconstructed target scene. Among several inversion schemes for SAR imaging, we used an inversion scheme called wavefront reconstruction which has no approximation in wave propagation analysis, and tried to verify whether the collected data with synthesized aperture actually give the same support as that with physical aperture in the same size. To do this, we performed a signal subspace comparison of two imaging models with physical and synthesized arrays, respectively. Theoretical comparisons and numerical analysis using Gram-Schmidt procedures have been performed. The results showed that the synthesized array data fully span the physical array data with the same system geometry. This result strongly supports the previously proposed inversion scheme valuable in high resolution radar imaging.

  • PDF

A Concept of Adaptive Focusing using a Rotman Lens for Detecting Buried Structures

  • Kim, Jae-Heung
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.536-540
    • /
    • 2003
  • A new concept of adaptive focusing, using a Rotman lens, is presented in this paper. A Rotman lens is a microwave lens which is able to focus microwave power on its focal arc or generate multiple beams. By adding the array of phase shifters between a Rotman lens and antenna elements, the wavefront can be adaptively modulated to focus objects distributed in short range rather than far-field zone. From the optical point of view, the propagations of the lens have been simplified from the Fresnel diffraction integral to the Fourier transform. Using Fourier Transform, a beam propagation method has been developed to show improvement of the resolution by controlling wavefront of wave propagating from an aperture-type antenna array. The beam width(or spot size) and intensity have been calculated for a focused beam propagating from an array having $10{\lambda}$ of its size. For the beam with $20{\lambda},\;30{\lambda}$, and $50{\lambda}$ of geometrical focal length, the half-power beamwidth (spot size) is about $1.1{\lambda},\;1.3{\lambda}$, and $1.9{\lambda}$, respectively.

  • PDF

A Study on the Improvement of Wavefront Sensing Accuracy for Shack-Hartmann Sensors (Shack-Hartmann 센서를 이용한 파면측정의 정확도 향상에 관한 연구)

  • Roh, Kyung-Wan;Uhm, Tae-Kyoung;Kim, Ji-Yeon;Park, Sang-Hoon;Youn, Sung-Kie;Lee, Jun-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.5
    • /
    • pp.383-390
    • /
    • 2006
  • The SharkHartmann wavefront sensors are the most popular devices to measure wavefront in the field of adaptive optics. The Shack-Hartmann sensors measure the centroids of spot irradiance distribution formed by each corresponding micro-lens. The centroids are linearly proportional to the local mean slopes of the wavefront defined within the corresponding sub-aperture. The wavefront is then reconstructed from the evaluated local mean slopes. The uncertainty of the Shack-Hartmann sensor is caused by various factors including the detector noise, the limited size of the detector, the magnitude and profile of spot irradiance distribution, etc. This paper investigates the noise propagation in two major centroid evaluation algorithms through computer simulation; 1st order moments of the irradiance algorithms i.e. center of gravity algorithm, and correlation algorithm. First, the center of gravity algorithm is shown to have relatively large dependence on the magnitudes of noises and the shape & size of irradiance sidelobes, whose effects are also shown to be minimized by optimal thresholding. Second, the correlation algorithm is shown to be robust over those effects, while its measurement accuracy is vulnerable to the size variation of the reference spot. The investigation is finally confirmed by experimental measurements of defocus wavefront aberrations using a Shack-Hartmann sensor using those two algorithms.

Simulation of Elastic Wave Propagation in Anisotropic Materials (이방성 재료에서의 탄성파 전파 과정에 대한 시뮬레이션)

  • Kim, Young-H.;Lee, Seung-S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.4
    • /
    • pp.227-236
    • /
    • 1997
  • Quantitative analysis and imaging of elastic wave propagation are very important for the materials evaluation as well as flaw detection. The elastic wave propagation in an anisotropic media is more complex, and analysis and imaging become essential for flaw detection and materials evaluation. In the anisotropic media, the wave velocity is dependent on the propagation direction. In addition, the direction of group velocity is different from that of phase velocity, the direction of energy flow is not same as the propagation direction of wavefront (beam skewing effect). Especially, this effect becomes critical for the large anisotropic media such as fiber composite materials, and the results using elastic waves for those materials have to be analyzed considering the wave propagation mechanism. Since the analytical approach for the wave propagation in the anisotropic materials is limited, the numerical analysis such as finite difference method (FDM) have been used for these case. Therefore, 2-dimensional FDM program for the elastic wave propagation is developed, and wave propagation in anisotropic media are simulated.

  • PDF

Aircraft Path Planning Considering Pop-up Threats Using Framed-Quadtree Wavefront Propagation and Navigation Function (Framed-Quadtree 파면전파 기법과 항법함수 기법을 이용한 항공기 위협회피 궤적 설계)

  • Kim, Pil-Jun;Choi, Jong-Uk;Kim, You-Dan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.10
    • /
    • pp.918-926
    • /
    • 2007
  • Military aircrafts usually operate at the area with lots of threats such as radars and surface-to-air missiles. Aircraft also faces with the unexpected or pop-up threats. Under this environment, a safe flight path should be generated to lead a mission successful. In this paper, a new path planning algorithm is proposed to provide less dangerous flight path efficiently. Of many path planning algorithms, a potential method is considered, because it has advantages of computation efficiency and smooth path generation. Trajectory generation under the condition of maximum range is studied so that the aircraft may reach the target area without refueling. The algorithm to cope with an unexpected situation is also proposed by adopting the concept of initial direction vector, additional force, and a new mapping function. The performance of the proposed algorithms is demonstrated for SEAD (Suppression of Enemy Air Defences) mission by numerical simulation.