• Title/Summary/Keyword: Wave-number spectrum

Search Result 68, Processing Time 0.025 seconds

Electromagnetic Electron-Cyclotron Wave for Ring Distribution with Alternating Current (AC) Electric Field in Saturn Magnetosphere

  • Haridas, Annex Edappattu;Kanwar, Shefali;Pandey, Rama Shankar
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.2
    • /
    • pp.35-42
    • /
    • 2022
  • During their respective missions, the spacecraft Voyager and Cassini measured several Saturn magnetosphere parameters at different radial distances. As a result of information gathered throughout the journey, Voyager 1 discovered hot and cold electron distribution components, number density, and energy in the 6-18 Rs range. Observations made by Voyager of intensity fluctuations in the 20-30 keV range show electrons are situated in the resonance spectrum's high energy tail. Plasma waves in the magnetosphere can be used to locate Saturn's inner magnetosphere's plasma clusters, which are controlled by Saturn's spin. Electromagnetic electron cyclotron (EMEC) wave ring distribution function has been investigated. Kinetic and linear approaches have been used to study electromagnetic cyclotron (EMEC) wave propagation. EMEC waves' stability can be assessed by analyzing the dispersion relation's effect on the ring distribution function. The primary goal of this study is to determine the impact of the magnetosphere parameters which is observed by Cassini. The magnetosphere of Saturn has also been observed. When the plasma parameters are increased as the distribution index, the growth/damping rate increases until the magnetic field model affects the magnetic field at equator, as can be seen in the graphs. We discuss the outputs of our model in the context of measurements made in situ by the Cassini spacecraft.

Vibration Analysis During Breaking Process of Phantom Induced by Shock Wave for Medical Treatment (의료용 충격파에 의할 대상물의 파쇄진행에 따른 진동해석)

  • Park Kyu-Chil;Jang Yun-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.43-48
    • /
    • 2006
  • When the vibration of a phantom induced by Extracorporeal Shock Wave Lithotripter (ESWL) was investigated. we found the fact that the Peak frequency in the Power spectrum shifts from high frequency to low frequency as the number of shots increases[2]. The fact was confirmed experimentally by detecting the peak frequency obtained from the vibrations of bronze models[3]. This Paper investigates the experimental results. For the Purpose. we carried out the computer simulation using the finite element method. It is found that the results from the experiments are computer by computer simulation.

On the Statistical Characteristics of Freak Wave Occurrence (Freak Wave 발생의 통계적 특성에 대하여)

  • Kim, Do-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.2
    • /
    • pp.138-145
    • /
    • 2011
  • In this paper time series wave data are simulated by the Monte Calo method using random numbers to generate random phases of the wave signal. The simulated wave signasl are used to study the characteristics of freak waves. Various sea states are represented by combinations of the significant wave height $H_s$ defined in the spectrum method and the significant wave steepness $S_s$. For a fixed value of $S_s$, the probability of the occurrence of the freak wave is decreased as $H_s$ increases. For a fixed value of $H_s$ the probability of the occurrence of the freak wave increases as $S_s$ increases. The average value of the maximum wave height increase as $S_s$ increases, but the average height of freak wave remains the same and the value approaches two times of $H_s$. For the fixed value of $S_s$, average kurtosis of wave elevation increases as $H_s$ increases, but for a fixed $H_s$, the average kurtosis decreases as $S_s$ increases. The average of abnormality index(AI) is around 2.11 irregardless of $H_s$ and $S_s$. The maximum value of AI lies between 2.5 - 3.0. Therefore it is conjectured that AI maximum due to linear focusing is 3.0.

Optimal Estimation of the Peak Wave Period using Smoothing Method (평활화 기법을 이용한 파랑 첨두주기 최적 추정)

  • Uk-Jae, Lee;Byeong Wook, Lee;Dong-Hui, Ko;Hong-Yeon, Cho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.6
    • /
    • pp.266-274
    • /
    • 2022
  • In this study, a smoothing method was applied to improve the accuracy of peak wave period estimation using the water surface elevation observed from the Oceanographic and Meteorological Observation Tower located on the west coast of the Korean Peninsula. Validation of the application of the smoothing method was per- formed using variance of the surface elevation and total amount wave energy, and then the effect on the application of smoothing was analyzed. As a result of the analysis, the correlation coefficient between variance of the surface elevation and total amount wave energy was 0.9994, confirming that there was no problem in applying the method. Thereafter, as a result of reviewing the effect of smoothing, it was found to be reduced by about 4 times compared to the confidence interval of the existing estimated spectrum, confirming that the accuracy of the estimated peak wave period was improved. It was found that there was a statistically significant difference in proba- bility density between 4 and 6 seconds due to the smoothing application. In addition, for optimal smoothing, the appropriate number of smoothings according to the significant wave height range was calculated using a statistical technique, and the number of smoothings was found to increase due to the unstable spectral shape as the significant wave height decreased.

Convolutionally-Coded and Spectrum-Overlapped Multicarrier DS-CDMA Systems in a Multipath Fading Channel

  • Oh, Jung-Hun;Kim, Ki-Doo;Milstein, Laurence B.
    • ETRI Journal
    • /
    • v.23 no.4
    • /
    • pp.177-189
    • /
    • 2001
  • Multicarrier DS-CDMA is an effective approach to combat fading and various kinds of interference. In this paper, we present an overlapped multicarrier DS-CDMA system, wherein each of the rate 1/M convolutionally-encoded symbols is also repetition coded and transmitted using overlapped multicarriers. However, since the frequency spectrums of successive carriers are allowed to overlap, the transmission bandwidth is more efficiently utilized. The effect of the overlapping percentage between successive carriers of a multicarrier DS-CDMA system on the performance is investigated to determine the overlapping percentage showing the best performance. We suggest two methods for sub-band overlapping variation. One is to allow variation of sub-band overlapping percentage when the total number of subcarriers is fixed. The other is to increase the number of sub-bands (the number of repetitions R) with fixed sub-band bandwidth. Given a total number of subcarriers MR, we show that the BER variation is highly dependent on the roll-off factor ${\beta}$ of a raised-cosine chip wave-shaping filter irrespective of convolutional encoding rate 1/M and repetition coding rate 1/R. We also analyze the possibility of reduction in total multi-user interference by considering the variation of both the roll-off factor ($0<{\beta}{\leq}1$) and the sub-band overlapping factor ($0<{\lambda}{\leq}2$), and show that the proposed system may outperform the multicarrier DS-CDMA system in [3].

  • PDF

Longitudinal Motion Analysis in Multi-Directional Irregular Waves for a Training Ship using Commercial Code (상용코드를 이용한 다방향 불규칙파중 실습선의 종운동해석)

  • Han, Seung-Jae;Kim, In-Cheol;Oh, Dea-Kyun;Lee, Gyoung-Woo;Gim, Ok-Sok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.2
    • /
    • pp.153-159
    • /
    • 2012
  • This study gives the vertical motion analysis in multi-directional irregular waves using a commercial code(MAXSURF v.16) based on linear strip theory for a training ship. To verify the commercial code prior to the analysis, we guarantees the reliability of this paper's results using the commercial code by comparing with the results(Flokstra, 1974) of same hull and experimental conditions on a Panamax container. The analysis conditions are Beaufort wind scale No. 5($\bar{T}=5.46$, $H_{1/3}=2m$) based on ITTC wave spectrum, encounter angle Head & bow seas($150^{\circ}$) and Froude number Fn=0.257. Finally, we calculates heave RAO, pitch RAO and obtains the result of ship's response spectra for heave and pitch motions. In the motion response spectrum under the multi-directional irregular waves, heave motion reacts slightly high in short-crested waves and pitch motion reacts high in long-crested waves.

A Study on the Characteristics of Underwater Explosion for the Development of a Non-Explosive Test System (무폭약 시험 장치 개발을 위한 수중폭발 특성에 대한 연구)

  • Lee, Hansol;Park, Kyudong;Na, Yangsub;Lee, Seunggyu;Pack, Kyunghoon;Chung, Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.6
    • /
    • pp.322-330
    • /
    • 2020
  • This study deals with underwater explosion (UNDEX) characteristics of various non-explosive underwater shock sources for the development of non-explosive underwater shock testing devices. UNDEX can neutralize ships' structure and the equipment onboard causing serious damage to combat and survivability. The shock proof performance of naval ships has been for a long time studied through simulations, but full-scale Live Fire Test and Evaluation (LFT&E) using real explosives have been limited due to the high risk and cost. For this reason, many researches have been tried to develop full scale ship shock tests without using actual explosives. In this study, experiments were conducted to find the characteristics of the underwater shock waves from actual explosive and non-explosive shock sources such as the airbag inflators and Vaporizing Foil Actuator (VFA). In order to derive the empirical equation for the maximum pressure value of the underwater shock wave generated by the non-explosive impact source, repeated experiments were conducted according to the number and distance. In addition, a Shock Response Spectrum (SRS) technique, which is a frequency-based function, was used to compare the response of floating bodies generated by underwater shock waves from each explosion source. In order to compare the magnitude of the underwater shock waves generated by each explosion source, Keel Shock Factor (KSF), which is a measure for estimating the amount of shock experienced by a naval ship from an underwater explosionan, was used.

Position Estimation of Underwater Acoustic Source Using Pulsed CW Signal (Pulsed CW 신호를 사용하는 수중 음원의 위치 추정을 위한 시간지연차 추정법)

  • 최영근;손권;도경철;김기만
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.7
    • /
    • pp.514-520
    • /
    • 2004
  • There are many techniques for underwater source localization. These are the methods based on TDOA (Time Difference Of Arrival) estimation. beamforming techniques and high resolution techniques, etc. In this Paper we estimate the underwater source position using MCPSP (Modified Cross Power Spectrum Phase) function that is calculated on frequency domain using sensors of small number. However, the performances of the localizing method based on MCPSP function drops greatly in the case of CW (Continuous Wave) signal . In this Paper we proposed the TDOA estimation method for pulsed CW signal. In the Proposed method we composed of new segment including a edge of ping. This segment was computed by short-time energy detection. With theoretical representation the performances of the proposed method were analyzed under various environment.

A Study on Structural Intensity Measurement of Semi-infinite Beam (반무한보의 진동 인텐시티 계측에 대한 연구)

  • 이덕영;박성태
    • Journal of KSNVE
    • /
    • v.7 no.1
    • /
    • pp.43-53
    • /
    • 1997
  • This paper investigated the practical use for measuring the structural intensity (power flow per width of cross section) in a uniform semi-infinite beam in flexural vibration. The structural intensity is obtained as a vector at a measurement point, One-dimensional structural intensity can be obtained from 4-point cross spectral measurement, or 2-point measurement on the assumption of far field. The measurement errors due to finite difference approximation and phase mismatch of accelerometers are examined. For precise measurements, it would be better to make the value of k$\delta$(wave number x space between accelerometers) between 0.5 and 1.0. Formulation of the relation between bending waves in structures and structural intensity makes it possible to separate the wave components by which one can get a state of the vibration field. Experimental results are obtained from 2- and 4-point measurement performed at 200mm (near field) and 400mm (far field) apart from excitation point in random excitation. the results are compared with the theoretical values and measured values of input power spectrum in order to verify the accuracy of structural intensity method, 2-point method is suggested as the practical structural intensity method.

  • PDF

Scale Effects and Geometry of Sand Ripples under Wave Effects (해저사연의 형상특성과 축척효과)

  • Kim, Kyu-Han
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.4
    • /
    • pp.271-278
    • /
    • 1993
  • Sand ripple. the smallest bottom configuration, is one of the most important factors in the mechanism of sand transport. This paper deals with characteristics of ripple geometry generated by regular and irregular waves. Especially. rearrangement of ripple spacing caused by increasing or decreasing waves is investigated through movable bed experiments. Nondimensional length of rearranged ripples becomes very close to that of measured ripples in the field Furthermore, stochastic characteristics and occurrence limits of three dimensional ripples are investigated through the wave number spectrum calculated from the measured bottom topography.

  • PDF