• Title/Summary/Keyword: Wave-number spectrum

Search Result 68, Processing Time 0.021 seconds

Attenuation of High-Frequency Wave Energy Due to Opposing Currents

  • Suh, Kyung-Duck;Lee, Dong-Young-
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1993.07a
    • /
    • pp.20-25
    • /
    • 1993
  • In coastal waters, more often than not, waves propagate on currents driven by tidal forces, earth’s gravity, or wind. There have been a number of studies for dealing with the change of wave spectrum due to tile presence of current. Based on the conservation of wave action, Hedges et al. (1985) have proposed an equation which describes the influence of current on the change of wave spectrum in water of finite depth. (omitted)

  • PDF

Frequency-Wave Number Method for the Automated Calculation of the Phase Velocities from the SASW Measurements (SASW실험 분산곡선의 자동화 계산을 위한 주파수-파수 기법)

  • 조성호;강태호
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.299-310
    • /
    • 2003
  • In the evaluation of the subgrade stiffness structure by the SASW method, the calculation of the phase velocities is the important task controlling the reliability of the result. The interpretation of the phase spectrum should precede the phase-velocity calculation in the current practice of the SASW method. The difficulty involved in the interpretation prohibited the SASW method from being spread over to the industry. This study proposed a new method called the frequency-wave number technique, which is based on the frequency-wave number relationship of the surface wave in the multi-layered system. The frequency-wave number technique eliminates the expertise in the interpretation of the phase spectrum, automates the phase-velocity calculation and expedites the determination of the phase-velocity dispersion curve. To verify the validity of the proposed frequency-wave number method, the transfer function determined from the numerical simulation of the SASW measurements was used fir the calculation of the automatic calculation of the phase velocities and compared with the phase velocities by WinSASW employing the phase-unwrapping method. Also, the proposed method was applied to the real SASW measurements performed at$\bigcirc$$\bigcirc$area in GyeongGi-Do to see how the proposed method works with the real measurements.

Hindcasting Analysis of Swells Occurred in the East Coast in February 2008 (2008년 2월 동해안에서 발생한 너울의 예측 분석)

  • Kim, Tae-Rim;Lee, Kang-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.15 no.2
    • /
    • pp.62-67
    • /
    • 2010
  • Swells occurred on the coast of the East Sea on February 24, 2008 caused a loss of three lives and also damaged several west coasts of Japan. The recent increase of swell intensity with number of accidents demands more accurate forecasting of swells in terms of time and location. The swells occurred in February 2008 are hindcasted using SWAN model to examine the accuracy of the model for future forecasting. The model results are compared with ReWW3 data as well as measurement wave data and specially, wave spectrum is analysed by comparing with observed spectrum at two wave stations located in the east coast of Korea. The SWAN model shows similar results with observation data in terms of significant wave heights and swell arrival time but the shapes of wave spectrum are different between model and in-situ measurement data. For further improvement of swell forecasting, more comparison and analysis with observed wave spectrum is necessary and wave directional spectrum data are required to study on the characteristics of swells in the East Sea.

A Study on the Wave Generating Characteristics of the Multi-directional Irregular Wave Basin (다방향불규칙파 조파수조의 조파특성에 관한 연구)

  • SOHN Byung-Kyu;RYU Cheong-Ro
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.6
    • /
    • pp.705-712
    • /
    • 2001
  • It is of great importance to represent the directional ocean waves in a laboratory basin for hydraulic model tests. The directional ocean waves can be expressed as a linear superposition of a large number of component waves with different frequencies and propagating directions. The aim of the study is to check the wave generating characteristics by serpent-type wave generating system in PKNU (Pukyong National University) which is composed of 10 piston-type wave generators. In the experiment, spatial variation of irregular wave heights and propagating angles are measured in the multi-directional wave maker basin. Target wave directional spectrum is reproduced in the area of multi-directional wave maker basin. The directional spreading of the generated waves varied spacially in the basin. They differed from target spectrum as the measurement point becomes far from the center line normal to the generator face, The effective generation area where that target can be reproduced is limited to the triangular area attached the generator face. According to the results, it is emphasized that the effective experiment area in the basin considered wave generator characteristics should be determined in consideration of experimental conditions including structural shapes, water depth, wave directionality etc.

  • PDF

Wave Spectrum Based Fatigue Analysis for Mediterranean Sea, Black Sea and Aegean Sea

  • Kabakcioglu, Fuat;Bayraktarkatal, Ertekin
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.2
    • /
    • pp.61-67
    • /
    • 2013
  • In this study, wave spectrum based fatigue analyses are studied for Turkey's adjacent coastal seas by using Maestro finite element analyzing software. Palmgren-Miner's method is used to obtain the fatigue safe life time. Palmgren-Miner's method was selected for the fatigue analyses because of its good acceptance of data from almost all classification societies such as Germanischer Lloyd, the American Bureau of Shipping, Det Norske Veritas, etc. The maximum stress regions of the structures are obtained by using finite element analyses, and the results are compared with the endurance limit of the W$\ddot{o}$hler diagram of AA5059 H321 aluminum alloy. The wave characteristics table given in this article is used to obtain the number of cycles for each sea condition. By using the wave characteristics table, the wave lengths, wave speeds, and cycles are obtained. This study is performed to estimate the lifetimes of a semi-swath type coast guard boat and/or commercial yacht projects, which are produced by using AA5059 H321 aluminum alloy, under different sea environment conditions. Fatigue examinations are performed for both head seas and oblique seas.

Ocean Engineering Basic Test for 5MW Offshore Wind Turbine Sub-structure Jack-up Platform (5MW급 해상풍력 Sub-structure Jack-up Platform 수조모형시험)

  • Jeon, Jung-Do;Jeon, Eon-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.1
    • /
    • pp.15-21
    • /
    • 2013
  • The safety and stability of 5MW class offshore wind turbine Jack-up platform was investigated through ocean basin experiment. For simulating the environmental condition of yellow sea in the South Korea, diverse waves, winds and currents were performed based on Froude's number. Regular wave and irregular wave based on Froude's number were applied to the wind turbine structure. In experiments, the height and period of regular wave type were scaled down as the 1:50 ratio of real wave condition. Irregular wave type was simulated with TMA(Texel Storm, Marsen and Arsloe)spectrum. The vertical reaction force, resonance period and wave pressure applied to multi-supporters of wind offshore structure were measured experimentally. Finally, the results showed that the capsizing situation of the offshore structure was generated by the severe environmental condition.

Infrared Detector Using Pyroelectrics

  • Hur, Chang-Wu
    • Journal of information and communication convergence engineering
    • /
    • v.4 no.4
    • /
    • pp.147-150
    • /
    • 2006
  • The thin film of PbTiO3 is fabricated at substrate temperature of 100-150$^{\circ}C$. The infrared spectrum of the ferroelectric thin film is measured as temperature of thermal treatment, 400 - 550$^{\circ}C$. According to infrared spectrum analysis, there are absorption bands at a nearby wave number of 1000 $\sim$ 400 cm-l and the thin film treated by temperature of 550$^{\circ}C$ has absorption bands of wave number 500 cm-l similar to infrared response property of PbTiO3 powder. The pyroelectric infrared detector is fabricated after deposition of Pt and PbTiO3 thin film on Si wafer by sputtering machine. The measured remnant polarization are 11.5-12.5$\muC/cm2$, breakdown electric field Ec is 100-120KV/cm, and voltage responsivity and detectivity is -280V/W, -108cm Hz/W.

Infrared Spectral Signatures of Dust by Ground-based FT-IR and Space-borne AIRS (지상 및 위성 고분해 적외스펙트럼 센서에서 관측된 황사 특성)

  • Lee, Byung-Il;Sohn, Eun-Ha;Ou, Mi-Lim;Kim, Yoon-Jae
    • Atmosphere
    • /
    • v.19 no.4
    • /
    • pp.319-329
    • /
    • 2009
  • The intensive dust observation experiment has been performed at Korea Global Atmosphere Watch Center (KGAW) in Anmyeon, Korea during each spring season from 2007 to 2009. Downward and upward hyper-spectral spectrums over the dust condition were measured to understand the hyper-spectral properties of Asian dust using both ground-based Fourier Transform Infrared Spectroscopy (FT-IR) and space-borne AIRS/Aqua. To understand the impact of the Asian dust, a Line-by-Line radiative transfer model runs to calculate the high resolution infrared spectrum over the wave number range of $500-500cm^{-1}$. Furthermore, the radiosonde, a $PM_{10}$ Sampler, a Micro Pulse Lidar (MPL), and an Aerodynamic Particle Sizer (APS) are used to understand the vertical profile of temperature and humidity and the properties of Asian dust like concentration, altitude of dust layer, and size distribution. In this study, we found the Asian dust distributed from surface up to 3-4 km and volume concentration is increased at the size range between 2 and $8{\mu}m$ The observed dust spectrums are larger than the calculated clear sky spectrums by 15~60K for downward and lower by around 2~6K for upward in the wave number range of $800-1200cm^{-1}$. For the characteristics of the spectrum during the Asian dust, the downward spectrum is revealed a positive slope for $800-1000cm^{-1}$ region and negative slope over $1100-1200cm^{-1}$ region. In the upward spectrum, slopes are opposed to the downward one. It is inferred that the difference between measured and calculated spectrum is mostly due to the contribution of emission and/or absorption of the dust particles by the aerosol amount, size distribution, altitude, and composition.

Impulse Response Filtration Technique for the Determination of Phase Velocities from SASW Measurements (SASW시험에 의한 위상속도 결정을 위한 임펄스 응답필터 기법)

  • ;Stokoe, K.H., Il
    • Geotechnical Engineering
    • /
    • v.13 no.1
    • /
    • pp.111-122
    • /
    • 1997
  • The calculation of phase velocities in Spectral-Analysis -of-Surface -Waves (SASW) meas urements requires unwrapping phase angles. In case of layered systems with strong stiffness contrast like a pavement system, conventional phase unwrapping algorithm to add in teger multiples of 2n to the principal value of a phase angle may lead to wrong phase volocities. This is because there is difficulty in counting the number of jumps in the phase spectrum especially at the receiver spacing where the measurements are in the transition Bone of defferent modes. A new phase interpretation scheme, called "Impulse Response Fil traction ( IRF) Technique," is proposed, which is based on the separation of wave groups by the filtration of the impulse response determinded between two receivers. The separation of a wave group is based on the impulse response filtered by using information from Gabor spectrogram, which visualizes the propagation of wave groups at the frequency -time space. The filtered impulse response leads to clear interpretation of phase spectrum, which eliminates difficulty in counting number of jumps in the phase spectrum. Verification of the IRF technique was performed by theoretical simulation of the SASW measurement on a pavement system which complicates wave propagation.opagation.

  • PDF

DIFFUSIVE SHOCK ACCELERATION WITH MAGNETIC FIELD AMPLIFICATION AND ALFVÉNIC DRIFT

  • Kang, Hyesung
    • Journal of The Korean Astronomical Society
    • /
    • v.45 no.5
    • /
    • pp.127-138
    • /
    • 2012
  • We explore how wave-particle interactions affect diffusive shock acceleration (DSA) at astrophysical shocks by performing time-dependent kinetic simulations, in which phenomenological models for magnetic field amplification (MFA), Alfv$\acute{e}$nic drift, thermal leakage injection, Bohm-like diffusion, and a free escape boundary are implemented. If the injection fraction of cosmic-ray (CR) particles is ${\xi}$ > $2{\times}10^{-4}$, for the shock parameters relevant for young supernova remnants, DSA is efficient enough to develop a significant shock precursor due to CR feedback, and magnetic field can be amplified up to a factor of 20 via CR streaming instability in the upstream region. If scattering centers drift with Alfv$\acute{e}$n speed in the amplified magnetic field, the CR energy spectrum can be steepened significantly and the acceleration efficiency is reduced. Nonlinear DSA with self-consistent MFA and Alfv$\acute{e}$nic drift predicts that the postshock CR pressure saturates roughly at ~10 % of the shock ram pressure for strong shocks with a sonic Mach number ranging $20{\leq}M_s{\leq}100$. Since the amplified magnetic field follows the flow modification in the precursor, the low energy end of the particle spectrum is softened much more than the high energy end. As a result, the concave curvature in the energy spectra does not disappear entirely even with the help of Alfv$\acute{e}$nic drift. For shocks with a moderate Alfv$\acute{e}$n Mach number ($M_A$ < 10), the accelerated CR spectrum can become as steep as $E^{-2.1}$ - $E^{-2.3}$, which is more consistent with the observed CR spectrum and gamma-ray photon spectrum of several young supernova remnants.