• Title/Summary/Keyword: Wave-Piercing Hull-form

Search Result 5, Processing Time 0.021 seconds

Study of Hull Form Development of Wave-Piercing-Type High-Speed Planing Boat (파랑관통형 고속활주선 선형개발에 관한 연구)

  • Jeong, Uh-Cheul;Lee, Dong-Kun;Jung, Ki-Seok
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.69-74
    • /
    • 2016
  • A new wave-piercing-type high-speed planing boat without a chine was developed, and its basic performance was investigated in a model test, including the resistance, trim, and sinkage. The maximum speed of the developed ship was 35 knots. The hull form was developed by combining a VSV (very slender vessel) and TH (transonic hull), which have large deadrise angles at the bow. The main dimensions were estimated by a statistical approach using actual ship data. The effect of a side fin attached at the stern near the water line was investigated from a resistance point of view. It was found that the developed hull form showed the possibility of a new concept for a high-speed planing hull without a chine, and the side fin played an important role in increasing the resistance performance by controlling the trim and sinkage in the high-speed range.

A Model Test Study on the Effect of the Stern Interceptor for the Reduction of the Resistance and Trim Angle for Wave-piercing Hulls (파랑관통형 선형의 저항 및 트림각 감소를 위한 선미 인터셉터 부착효과에 관한 모형시험 연구)

  • Kim, Dae Hyuk;Seo, Inn-Duk;Rhee, Key-Pyo;Kim, Nakwan;Ahn, Jin-Hyung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.6
    • /
    • pp.485-493
    • /
    • 2015
  • Planing hull form is widely used as a high speed vessel hull. There is a problem of the planing hull not solved yet. The problem is that the planing hull has very large vertical acceleration and large heave and pitch motions. As one method for overcoming this problem, there is "wave-piercing hull". Before the motion in waves is investigated, the resistance and running attitude must be investigated. In this paper, the running attitude and resistance of two wave-piercing hulls are investigated by model tests. Model test results show that the wave-piercing hulls have large trim angle and sinkage at the high speed, so additional model tests are conducted by using the hull appended by stern interceptor that is very thin plate to increase the hydrodynamic pressure at the attached location. The results are compared with other planing hulls and the resistance components and the hydrodynamic force are discussed. From the model test results, it can be known that the stern interceptor is the effective appendage for the reduction of the resistance and trim angle of wave-piercing hull.

The overall motion sickness incidence applied to catamarans

  • Piscopo, Vincenzo;Scamardella, Antonio
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.4
    • /
    • pp.655-669
    • /
    • 2015
  • The Overall Motion Sickness Incidence is applied to the hull form optimization of a wave piercing high-speed catamaran vessel. Parametric hull modelling is applied to generate two families of derived hull forms, the former varying the prismatic coefficient and the position of longitudinal centre of buoyancy, the latter instead the demi-hull separation. Several heading angles are analysed in a seaway, considering all combinations of significant wave height and zero-crossing period under two operating scenarios. The optimum hull is generated and vertical accelerations at some critical points on main deck are compared with the parent ones. Finally a comparative analysis with the results obtained for a similarly sized monohull passenger ship is carried out, in order to quantify, by the OMSI, the relative goodness in terms of wellness onboard of monohulls and catamarans, as a function of sea states and operating scenarios.

Analysis of Hull-Induced Flow Noise Characteristics for Wave-Piercing Hull forms (파랑관통형 선형의 선체유기 유동소음특성에 관한 연구)

  • Choi, Woen-Sug;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung;Seo, Jeong-Hwa;Rhee, Shin-Hyung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.5
    • /
    • pp.619-627
    • /
    • 2018
  • As ships become faster, larger and are required to meet higher standards, the importance of flow noise is highlighted. However, unlike in the aeroacoustics field for airplanes and trains (where flow noise is considered in design), acoustics are not considered in the marine field. In this study, analysis procedures for hull-induced flow noise are established to investigate the flow noise characteristics of a wave-piercing hull form that can negate the effect of wave-breaking. The principal mechanisms behind hull-induced flow noise are fluid-structure interactions between complex flows underneath the turbulent boundary layer and the hull. Noise induced by the turbulent boundary layer was calculated using wall pressure fluctuation and energy flow analysis methods. The results obtained show that noise characteristics can be distinguished by frequency range and hull region. Also, the low-frequency range is affected by hull forms such that it is correlated with ship speed.