• Title/Summary/Keyword: Wave transmission rate

Search Result 100, Processing Time 0.024 seconds

Wave Damping Rate Over Multi-layer Permeable Bed of Finite Depth (깊이가 유한한 다중 투수층 위에서의 파의 감쇠율)

  • Suh, Kyung-Duck;Do, Ki-Deok
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.2
    • /
    • pp.127-135
    • /
    • 2009
  • Reid and Kajiura(1957) has studied on the wave damping rate over a permeable bed of infinite depth. In this study, wave damping rate over a permeable bed of finite depth is derived by linear wave theory. It is then extended to derive wave damping rates over a double or triple layer, each of which consist of different material. Applying the wave damping rate to the mild slope equation, the wave transmission coefficient over a permeable bed has been calculated. The model has been certificated by comparing with the result of Flaten and Rygg(1991)'s integral equation method in the case of a single-layer bed.

Prediction of Wave Transmission Characteristics of Low Crested Structures Using Artificial Neural Network

  • Kim, Taeyoon;Lee, Woo-Dong;Kwon, Yongju;Kim, Jongyeong;Kang, Byeonggug;Kwon, Soonchul
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.313-325
    • /
    • 2022
  • Recently around the world, coastal erosion is paying attention as a social issue. Various constructions using low-crested and submerged structures are being performed to deal with the problems. In addition, a prediction study was researched using machine learning techniques to determine the wave attenuation characteristics of low crested structure to develop prediction matrix for wave attenuation coefficient prediction matrix consisting of weights and biases for ease access of engineers. In this study, a deep neural network model was constructed to predict the wave height transmission rate of low crested structures using Tensor flow, an open source platform. The neural network model shows a reliable prediction performance and is expected to be applied to a wide range of practical application in the field of coastal engineering. As a result of predicting the wave height transmission coefficient of the low crested structure depends on various input variable combinations, the combination of 5 condition showed relatively high accuracy with a small number of input variables defined as 0.961. In terms of the time cost of the model, it is considered that the method using the combination 5 conditions can be a good alternative. As a result of predicting the wave transmission rate of the trained deep neural network model, MSE was 1.3×10-3, I was 0.995, SI was 0.078, and I was 0.979, which have very good prediction accuracy. It is judged that the proposed model can be used as a design tool by engineers and scientists to predict the wave transmission coefficient behind the low crested structure.

Functional Improvement of Floating Breakwaters with Long Wave Kinetics (장주기 및 유동성분을 고려한 부유식방파제의 방파성능 개선)

  • Yoon, Jae-Seon;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.1
    • /
    • pp.93-99
    • /
    • 2011
  • In this study, a series of laboratory experiments are carried out to analyze fluid behaviors around multi-arranged (2 pieces) floating breakwaters with various parameters such as distance between structures, wave periods and steepness. The rate of wave transmission is shown to be affected directly by wave periods of incident waves and the breakwaters with multi-arranged structures show the highest rate of wave protection compared with other cases. The velocity fields around the breakwaters are measured by using the Laser Doppler Velocimetry system. The transmission coefficients are also measured in laboratory experiments. Finally, laboratory observed data are compared with numerical experimental results and analyzed in detail.

Experimental Study on Energy Transmission Rate of Horizontal Dual Plate by Random Wave System (수평형(水平型) 이열(二列) 조합판(組合板)의 투과율(透過率) 산정(算定)을 위한 실험적(實驗的) 연구(硏究))

  • Kweon, Hyuck-Min;Kim, Young-Hak;Kee, Sung Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4B
    • /
    • pp.421-428
    • /
    • 2008
  • For last decades, the rapid coastal erosion process spreading along Korean peninsular has become a nuisance especially for tourism and local economy. Global warming and sea-level rise demand persistently new coastal protection strategies against the conventional methods using armored structures. In a view of this, Kweon et al. (2007) has proposed a new type of horizontal steel plates for an ideal candidate as eco-friendly detached breakwater systems for global warming era. The breakwater is composed of piles and horizontal porous plates that was devised for the optimized blockage effects and wave energy dissipations. This system provides outstanding performances as wave barrier and added advantages such as a rapid installation, an easy relocation, a perfect water circulation for the stagnation of pollutions in sheltered regions. The present experimental study focuses on the performance evaluations of the proposed system in wind wave conditions as a wave dissipator and reflector. The reflection, transmission, and energy dissipation of the random waves has been discussed in detail based on a newly proposed relation between wave steepness and a plate width normalized by wave length that are major factors affecting the wave transmission.

A study on characteristics of overtopping rate with Berm's size at the low crest breakwater (저천단 방파제에서의 소단규모에 따른 월파특성에 관한 연구)

  • Kim, Hong-Jin;Jeon, Yong-Ho;Ryu, Cheong-Ro
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.113-118
    • /
    • 2002
  • Wave overtopping is one of the most important hydraulic responses of breakwater because it significantly affects its functional efficiency, the safety of transit and mooring on the rear side, wave transmission in the sheltered area, rear side armor stones and to some extent, the structural safety itself. The hydrodynamic characteristics of low crest breakwater by the overtopping rate can be summarized as follows: 1. It is better to use maximum overtopping rate than to use mean overtopping rate for design of coastal structures. 2. Maximum overtopping rate was increase with wave steepness (between 0.01 and 0.02). 3. Overtopping rate is decreased when relation length of berm was over wave length.

  • PDF

An Improved Method for Fault Location based on Traveling Wave and Wavelet Transform in Overhead Transmission Lines

  • Kim, Sung-Duck
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.2
    • /
    • pp.51-60
    • /
    • 2012
  • An improved method for detecting fault distance in overhead transmission lines is described in this paper. Based on single-ended measurement, propagation theory of traveling waves together with the wavelet transform technique is used. In estimating fault location, a simple, but fundamental method using the time difference between the two consecutive peaks of transient signals is considered; however, a new method to enhance measurement sensitivity and its accuracy is sought. The algorithm is developed based on the lattice diagram for traveling waves. Representing both the ground mode and alpha mode of traveling waves, in a lattice diagram, several relationships to enhance recognition rate or estimation accuracy for fault location can be found. For various cases with fault types, fault locations, and fault inception angles, fault resistances are examined using the proposed algorithm on a typical transmission line configuration. As a result, it is shown that the proposed system can be used effectively to detect fault distance.

A System of Ultra Wide Band Data Transmission Using Wavelet (웨이블렛을 이용한 초광대역 데이터 전송 시스템)

  • 노진수;박종태;이강현
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.446-449
    • /
    • 2003
  • In recent years, the research of an efficient transmission method is going to meet a demand for high speed and large capacity radio communication. These systems make use of ultra-short duration pulses which yield UWB(Ultra Wide Band) signals characterized by low power spectral densities. The wavelet synthesis wave is able to set up the scale freely. So it is possible to use as the transmission wave of UWB by compressing time. In this paper, we present a general analytical expression for the average BER(Bit Error Rate) performance of UWB data transmission using wavelet system as a function of the cross-correlation between the users' signatures in an additive white Gaussian noise(AWGN) channel.

  • PDF

Development of Millimeter-Wave Communication Modem for Mobile Wireless Backhaul in Mobile Hotspot Network

  • Choi, Seung Nam;Kim, Junhyeong;Kim, Il Gyu;Kim, Dae Jin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.4
    • /
    • pp.212-220
    • /
    • 2014
  • The current cellular communications are optimized for low mobility users, meaning that their performance is degraded at high speed. Therefore, passengers in a high-speed train experience very poor radio link quality due to the significantly large number of simultaneous handovers. In addition, wireless data traffic is expanding exponentially in trains, subways and buses due to the widespread use of smartphones and mobile devices. To solve the inherent problem of cellular communication networks and meet the growing traffic demand, this paper proposes the mobile hotspot network of a millimeter-wave communication system as a mobile wireless backhaul. This paper describes the physical layer design of uplink and downlink in the proposed system, and the performances of uplink and downlink are evaluated under Rician fading channel conditions. The implemented baseband prototype of the proposed millimeter-wave communication modem is presented. This system can provide a Gbps data rate service in high-speed trains carrying hundreds of wireless Internet users.

Efficiency of wave absorption by the porous of "Taewoo" of Jeju in regular seaway (파랑 중 제주 "테우" 틈에 의한 파 흡수효과)

  • Lee, Chang-Heon;Choi, Chan-Moon;Ahn, Jang-Young;Cho, Il-Hyoung
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.49 no.2
    • /
    • pp.144-152
    • /
    • 2013
  • In an effort to find the optimum porous of Taewoo through the mathematical model 2 - dimensional tank water experiment among the approached to a problem related to ocean engineering, this study analyzed the porosity by dividing it into 9 cases. As the wave penetrates through the longitudinal porous of the Taewoo model, it was found that there is a wave energy loss because of the phenomenon of the separation of the porous due to the eddy. Looking into the general tendency based on the wave-height meter (probe) data, it was found that the shorter wavelength and higher frequency area, the more reflection coefficients increased, but in contrast, the longer wavelength and lower frequency area, the transmission coefficients showed the increasing trend and energy dissipation was in a similar way with reflection coefficients. In addition, it was found that the bigger the porosity was, the narrower distribution range of reflection coefficients was, and the more its average value decreased. On the other hand the transmission coefficients in direct opposition to reflection was found to show the wider range and the more gradual increase in the average value as porosity was the bigger around the average value. In contrast, energy dissipation rate was found to increase linearly as porosity increased the more around the porosity of 0.2518 but it decreased gradually around the peak point. Through the above results, it is judged that the porous of optimum in the longitudinal direction of the Taewoo model perforated plate was about 2.6cm because it was found that the porosity which produced the lowest reflection and transmission coefficient and the highest energy dissipation. As a result of comparing this to the case where there was no porosity at all, it showed the function of wave absorbing about 31.60%.

Numerical Study on Optical Characteristics of Multi-Layer Thin Film Structures Considering Wave Interference Effects (파동간섭효과를 고려한 다층 박막 구조의 광학특성에 대한 수치해석 연구)

  • Shim, Hyung-Sub;Lee, Seong-Hyuk
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.5
    • /
    • pp.272-277
    • /
    • 2006
  • The present study is devoted to investigate numerically the optical characteristics of multi-layer thin film structures such as $Si/SiO_2\;and\;Ge/Si/SiO_2$ by using the characteristics transmission matrix method. The reflectivity and the absorptivity rate for thin film structures are estimated for different incident angles of rays and various film thicknesses. In addition, the influence of wavelength on optical characteristics related to complex refractive index is examined. It is found that such wave-like characteristics are observed in predicting reflectivities and depends mainly on film thickness. Moreover, the present study predicts the film thickness for ignoring wave interference effects, and it also discusses the fundamental physics behind optical and energy absorption characteristics appearing in multi-layer thin film structures.