• Title/Summary/Keyword: Wave plates

Search Result 321, Processing Time 0.025 seconds

Elemental Image Synthesis for Integral Imaging Using Phase-shifting Digital Holography

  • Jeong, Min-Ok;Kim, Nam;Park, Jae-Hyeung
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.275-280
    • /
    • 2008
  • We propose a method generating elemental images for the integral imaging using 4-step phaseshifting digital holography. Phase shifting digital holography is a way recording the digital hologram by changing the phase of the reference beam and extracting the complex field of the object beam. Since all 3D information is captured by phase-shifting digital holography, the elemental images for any specifications of the lens array can be generated from single phase-shifting digital holography. In experiment, phase-shifting is achieved by rotating half- and quarter- wave plates and the resultant interference patterns are captured by a $3272{\times}2469$ pixel CCD camera with $27{\mu}m{\times}27{\mu}m$ pixel size.

Characterization of a Tunable Flattened-Pass-band Fiber Comb Filter

  • Lee, Yong Wook;Jung, Jaehoon
    • Current Optics and Photonics
    • /
    • v.3 no.2
    • /
    • pp.111-118
    • /
    • 2019
  • The optical characteristics of a tunable flattened-pass-band fiber comb filter, based on the polarization-diversified loop configuration, are investigated using the $Poincar{\acute{e}}$-sphere representation. In the design process, the spectral flatness is checked quantitatively, and the tunability of the pass band is demonstrated experimentally. Theoretical calculations show that the filter also exhibits desirable dispersion and polarization properties. The orientation angles of rotatable wave plates for the wavelength tunability of the filter are obtained. Furthermore, we elaborate on the multiple angle loci produced by degeneracies through the combination of optical elements within the loop of the filter.

Wave propagation in a nonlocal prestressed piezoelectric polygonal plate with non-homogeneity and hygroscopic effect

  • Rajendran Selvamani;Hepzibah Christinal;Farzad Ebrahimi
    • Advances in materials Research
    • /
    • v.12 no.4
    • /
    • pp.309-330
    • /
    • 2023
  • The humid thermal vibration characteristics of a nonhomogeneous thermopiezoelectric nonlocal plate of polygonal shape are addressed in the purview of generalized nonlocal thermoelasticity. The plate is initially stressed, and the three-dimensional linear elasticity equations are taken to form motion equations. The problem is solved using the Fourier expansion collocation method along the irregular boundary conditions. The numerical results of physical variables have been discussed for the triangle, square, pentagon, and hexagon shapes of the plates and are given as dispersion curves. The amplitude of non-dimensional frequencies is tabulated for the longitudinal and flexural symmetric modes of the thermopiezoelectric plate via moisture and thermal constants. Also, a comparison of numerical results is made with existing literature, and good agreement is reached.

Design and Analysis of Multi Beam Space Optical Mixer

  • Lian Guan;Zheng Yang
    • Current Optics and Photonics
    • /
    • v.8 no.1
    • /
    • pp.56-64
    • /
    • 2024
  • In response to the current situation where general methods cannot effectively compensate for the phase delay of ordinary optical mixers, a multi-layer spatial beam-splitting optical mixer is designed using total reflection triangular prisms and polarization beam splittings. The phase delay is generated by the wave plate, and the mixer can use the existing parallel plates in the structure to individually compensate for the phase of the four output beams. A mixer model is established based on the structure, and the influence of the position and orientation of the optical components on the phase delay is analyzed. The feasibility of the phase compensation method is simulated and analyzed. The results show that the mixer can effectively compensate for the four outputs of the optical mixer over a wide range. The mixer has a compact structure, good performance, and significant advantages in phase error control, production, and tuning, making it suitable for free-space coherent optical communication systems.

Multi-spectral Mueller Matrix Imaging for Wheat Stripe Rust

  • Yang Feng;Tianyu He;Wenyi Ren;Dan Wu;Rui Zhang;Yingge Xie
    • Current Optics and Photonics
    • /
    • v.8 no.2
    • /
    • pp.192-200
    • /
    • 2024
  • Wheat stripe rust, caused by Puccinia striiformis, has reduced winter wheat yield globally for ages. In this work, multi-spectral Mueller matrix imaging with 37 measurements using the method of double rotatable quarter-wave plates was used to investigate wheat stripe rust. Individual Mueller matrix measurements were performed on incident monochromatic light with nine bands in the range of 430 to 690 nm. As a result, it was found that the infected area absorbed linearly polarized light and was sensitive to circularly polarized light in the spectral domain. Both linear depolarization and linear diattenuation images distinguished between wheat stripe rust and healthy tissue. The responsiveness of stripe rust to polarized light reveals the potential of using polarization imaging to detect plant diseases. This further suggests that the multi-spectral Mueller matrix imaging system provides us with an alternative approach to agricultural disease detection.

Evaluation of Size for Crack around Rivet Hole Using Lamb Wave and Neural Network (초음파 판파와 신경회로망 기법을 적용한 리뱃홀 부위의 균열 크기 평가)

  • Choi, Sang-Woo;Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.4
    • /
    • pp.398-405
    • /
    • 2001
  • The rivet joint has typical structural feature that can be initiation site for the fatigue crack due to the combination of local stress concentration around rivet hole and the moisture trapping. From a viewpoint of structural assurance, it is crucial to evaluate the size of crack around the rivet holes by appropriate nondestructive evaluation techniques. Lamb wave that is one of guided waves, offers a more efficient tool for nondestructive inspection of plates. The neural network that is considered to be the most suitable for pattern recognition has been used by researchers in NDE field to classify different types of flaws and flaw sizes. In this study, clack size evaluation around the rivet hole using the neural network based on the back-propagation algorithm has been tarried out by extracting some features from the ultrasonic Lamb wave for A12024-T3 skin panel of aircraft. Special attention was paid to reduce the coupling effect between the transducer and the specimen by extracting some features related to time md frequency component data in ultrasonic waveform. It was demonstrated clearly that features extracted from the time and frequency domain data of Lamb wave signal were very useful to determine crack size initiated from rivet hole through neural network.

  • PDF

Variation of the Group Velocity of Lamb Wave $S_o$ Mode with the Propagating Direction in the Laminated Unidirectional CFRP Plates (단일방향 탄소섬유복합재료 적층 판에서 전파 방향에 따른 램파 $S_o$ 모드의 군속도의 변화)

  • Kim Young H.;Lee Seung Seok;Kim Ho Chul;Lee Jeong Ki
    • Composites Research
    • /
    • v.18 no.1
    • /
    • pp.38-44
    • /
    • 2005
  • In this paper, the group velocity dispersion curves of the $S_o$ symmetric mode in unidirectional CFRP plate was calculated as varying the propagating direction. The group velocity curve was obtained with the group velocities of the $S_o$ symmetric mode corresponding to 0.2 MHz-mm under the first cut-off frequency in the dispersion curves, and corrected by introducing the slowness curve. The velocities of the $S_o$ symmetric mode in the unidirectional CFRP plate were measured as varying the propagating direction and compared with the col?rotted group velocity curve. The measured velocities were good agreement with the corrected group velocity curve except near the fiber direction which was called the cusp region. It implies that the direction of the group velocities incline toward the fiber direction of the unidirectional CFRP plates when the propagation direction is not accorded with the principal axis. It is supposed that this phenomenon rerults from the preferential propagating the energy toward the direction with the faster propagation velocity.

Impact and Damage Detection Method Utilizing L-Shaped Piezoelectric Sensor Array (L-형상 압전체 센서 배열을 이용한 충격 및 손상 탐지 기법 개발)

  • Jung, Hwee-Kwon;Lee, Myung-Jun;Park, Gyuhae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.5
    • /
    • pp.369-376
    • /
    • 2014
  • This paper presents a method that integrates passive and active-sensing techniques for the structural health monitoring of plate-like structures. Three piezoelectric transducers are deployed in a L-shape to detect and locate an impact event by measuring and processing the acoustic emission data. The same sensor arrays are used to estimate the subsequent structural damage using guided waves. Because this method does not require a prior knowledge of the structural parameters, such as the wave velocity profile in various directions, accurate results could be achieved even on anisotropic or curved plates. A series of experiments was performed on plates, including a spar-wing structure, to demonstrate the capability of the proposed method. The performance was also compared to that of traditional approaches and the superior capability of the proposed method was experimentally demonstrated.

Fracture Mechanism and Characterization of Falling Weight Impact in CF/Epoxy Composite Plates Under Law-Velocity Impact (저속충격 하에서 CFRP 복합적층판의 낙추 충격특성과 파괴기구)

  • 임광희;박노식;김영남;김선규;심재기;양인영
    • Composites Research
    • /
    • v.17 no.4
    • /
    • pp.53-60
    • /
    • 2004
  • This paper describes a method for a falling weight impact test to estimate the impact energy absorbing characteristics and impact strength of CFRP laminate plates based on considerations of stress wave propagation theory. The absorbed energy of T300 orthotropic composites is higher than that of quasi-isotropic specimen over impact energy 6.8J, but in case of using T700 fiber, much difference does not show. Also, absorbed energy of T300 orthotropic composites, which are composed of the same stacking number and orientation became more than that of T700 fiber specimen; however there was no big difference in case of quasi-isotropic specimens. The delamination areas of the impacted specimen were measured with the ultrasonic C-scanner to find correlation between impact energy and delamination area. The fracture surfaces were observed by using the SEM (scanning electron microscope) through a low-velocity impact test in order to confirm the fracture mechanism.

Inverter type High Efficency Neon Transformers for Neon Tubes (인버터식 고효율 네온관용 변압기)

  • 변재영;김윤호
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.6
    • /
    • pp.22-29
    • /
    • 2002
  • The conventional neon transformer systems are very bulky and heavy because it consist of leakage type transformers made of silicon steel plates. In addition, it has problems in noise by a neon transformer and in possibilities of fire and electrical shock when neon tubes are destroyed. A protection circuit is designed for all types of neon transformer loaded with one or more neon tubes. Whenever the neon tube fails to be started up, comes to the life end, encounters faults with open-circuits at the output terminals of the neon transformer, the protection circuit will be initiated to avoid more critical hazards. The input of the transformer is automatically cut off when the abnormal condition occurs, preventing waste of no-load power. To improve such problems, in this paper, a new type of neon power supply systems for neon tube is designed and implemented using inverter type circuits and a newly designed lightweight transformer. In the developed neon transformer system, a 60[Hz]power input is converted to 20[KHz]high frequency using half-wave inverters, thereby the transformer reduces its size by 1/5 in volume and 1/10 in weight.