DOI QR코드

DOI QR Code

Multi-spectral Mueller Matrix Imaging for Wheat Stripe Rust

  • Yang Feng (School of Science, Northwest A&F University) ;
  • Tianyu He (College of Information Engineering, Northwest A&F University) ;
  • Wenyi Ren (School of Science, Northwest A&F University) ;
  • Dan Wu (College of Mechanical and Electronic Engineering, Northwest A&F University) ;
  • Rui Zhang (School of Science, Northwest A&F University) ;
  • Yingge Xie (School of Science, Northwest A&F University)
  • Received : 2023.11.24
  • Accepted : 2024.03.01
  • Published : 2024.04.25

Abstract

Wheat stripe rust, caused by Puccinia striiformis, has reduced winter wheat yield globally for ages. In this work, multi-spectral Mueller matrix imaging with 37 measurements using the method of double rotatable quarter-wave plates was used to investigate wheat stripe rust. Individual Mueller matrix measurements were performed on incident monochromatic light with nine bands in the range of 430 to 690 nm. As a result, it was found that the infected area absorbed linearly polarized light and was sensitive to circularly polarized light in the spectral domain. Both linear depolarization and linear diattenuation images distinguished between wheat stripe rust and healthy tissue. The responsiveness of stripe rust to polarized light reveals the potential of using polarization imaging to detect plant diseases. This further suggests that the multi-spectral Mueller matrix imaging system provides us with an alternative approach to agricultural disease detection.

Keywords

Acknowledgement

The National Key Research and Development Project of China (2022YFD1900802); Key Research and Development Project of Shaanxi Province (2024NC-YBXM-215); Natural Science Foundation of Shaanxi Province (2024JCYBQN-0051); Chinese Universities Scientific Fund, P. R. China (2452022382); the National Natural Science Foundation of China, P. R. China (12204380).

References

  1. C. R. Wellings, "Global status of stripe rust: a review of historical and current threats," Euphytica 179, 129-141 (2011).  https://doi.org/10.1007/s10681-011-0360-y
  2. M. S. Hovmoller, S. Walter, and A. F. Justesen, "Escalating threat of wheat rusts," Science 5990, 369-369 (2010). 
  3. W. Chen, C. Wellings, X. Chen, Z. Kang, and T. Liu, "Wheat stripe (yellow) rust caused by Puccinia striiformis f. sp. tritici," Mol. Plant Pathol. 15, 433-446 (2014).  https://doi.org/10.1111/mpp.12116
  4. A. Martinez-Espinoza, J. Youmans, and J. Buck, "Stripe rust (yellow rust) of wheat," (University of Georgia Extension, Published date: May 21, 2009), https://extension.uga.edu/publications/detail.html?number=C960&title=stripe-rust-yellowrust-of-wheat (Accessed date: March 22, 2024). 
  5. R. He, H. Li, X. Qiao, and J. Jiang, "Using wavelet analysis of hyperspectral remote-sensing data to estimate canopy chlorophyll content of winter wheat under stripe rust stress," Int. J. Remote Sens. 39, 4059-4076 (2018).  https://doi.org/10.1080/01431161.2018.1454620
  6. D. Moshou, C. Bravo, R. Oberti, J. West, L. Bodria, A. McCartney, and H. Ramon, "Plant disease detection based on data fusion of hyper-spectral and multi-spectral fluorescence imaging using Kohonen maps," Real-Time Imaging 11, 75-83 (2005).  https://doi.org/10.1016/j.rti.2005.03.003
  7. R. Devadas, D. Lamb, S. Simpfendorfer, and D. Backhouse, "Evaluating ten spectral vegetation indices for identifying rust infection in individual wheat leaves," Precis. Agric. 10, 459-470 (2009).  https://doi.org/10.1007/s11119-008-9100-2
  8. J. Zhang, R. Pu, W. Huang, L. Yuan, J. Luo, and J. Wang, "Using in-situ hyperspectral data for detecting and discriminating yellow rust disease from nutrient stresses," Field Crop Res. 134, 165-174 (2012).  https://doi.org/10.1016/j.fcr.2012.05.011
  9. Z. Yao, Y. Lei, and D. He, "Early visual detection of wheat stripe rust using visible/near-infrared hyperspectral imaging," Sensors 19, 952 (2019). 
  10. Y. Shi, W. Huang, P. Gonzalez-Moreno, B. Luke, Y. Dong, Q. Zheng, H. Ma, and L. Liu, "Wavelet-based rust spectral feature set (WRSFs): A novel spectral feature set based on continuous wavelet transformation for tracking progressive host-pathogen interaction of yellow rust on wheat," Remote Sens. 10, 525 (2018). 
  11. Y. Ren, W. Huang, H. Ye, X. Zhou, H. Ma, Y. Dong, Y. Shi, Y. Geng, Y. Huang, Q. Jiao, and Q. Xie, "Quantitative identification of yellow rust in winter wheat with a new spectral index: Development and validation using simulated and experimental data," Int. J. Appl. Earth Obs. 102, 102384 (2021). 
  12. T. Novikova, J. Rehbinder, S. Deby, H. Haddad, J. Vizet, A. Pierangelo, P. Validire, A. Benali, B. Gayet, B. Teig, A. Nazac, B. Drevillon, F. Moreau, and A. De Martino, "Multi-spectral Mueller matrix imaging polarimetry for studies of human tissues," in Clinical and Translational Biophotonics (Optica Publishing Group, 2016), paper TTh3B-2. 
  13. T. Liu, T. Sun, H. He, S. Liu, Y. Dong, J. Wu, and H. Ma, "Comparative study of the imaging contrasts of Mueller matrix derived parameters between transmission and backscattering polarimetry," Biomed. Opt. Express 9, 4413-4428 (2018).  https://doi.org/10.1364/BOE.9.004413
  14. S. Yuanxing, Y. Yue, H. Honghui, L. Shaoxiong, and M. Hui, "Mueller matrix polarimetry: A label-free, quantitative optical method for clinical diagnosis," Chin. J. Lasers 47, 0207001 (2020). 
  15. J. C. Ramella-Roman, I. Saytashev, and M. Piccini, "A review of polarization-based imaging technologies for clinical and preclinical applications," J. Opt. 22, 123001 (2020). 
  16. C. L. Patty, D. A. Luo, F. Snik, F. Ariese, W. J. Buma, I. L. ten Kate, R. J. van Spanning, W. B. Sparks, T. A. Germer, G. Garab, and M. W. Kudenov, "Imaging linear and circular polarization features in leaves with complete Mueller matrix polarimetry," Biochim. Biophys. Acta-Gen. Subj. 1862, 1350-1363 (2018).  https://doi.org/10.1016/j.bbagen.2018.03.005
  17. B. A. Bugami, Y. Su, C. Rodriguez, A. Lizana, J. Campos, M. Durfort, R. Ossikovski, and E. Garcia-Caurel, "Characterization of vine, Vitis vinifera, leaves by Mueller polarimetric microscopy," Thin Solid Films 764, 139594 (2023). 
  18. S. N. Savenkov, R. S. Muttiah, and Y. A. Oberemok, "Transmitted and reflected scattering matrices from an English oak leaf," Appl. Opt. 42, 4955-4962 (2003).  https://doi.org/10.1364/AO.42.004955
  19. S. N. Savenkov, L. T. Mishchenko, R. S. Muttiah, Y. A. Oberemok, and I. A. Mishchenko, "Mueller polarimetry of virusinfected and healthy wheat under field and microgravity conditions," J. Quant. Spectrosc. Radiat. Transf. 88, 327-343 (2004).  https://doi.org/10.1016/j.jqsrt.2003.12.035
  20. S. N. Savenkov, R. S. Muttiah, E. A. Oberemok, A. V. Priezzhev, I. S. Kolomiets, and A. S. Klimov, "Measurement and interpretation of Mueller matrices of barley leaves," Quantum Electron. 50, 55 (2020). 
  21. C. He, H. He, J. Chang, B. Chen, H. Ma, and M. J. Booth, "Polarisation optics for biomedical and clinical applications: A review," Light: Sci. Appl. 10, 194 (2021). 
  22. D. N. Ignatenko, A. V. Shkirin, Y. P. Lobachevsky, and S. V. Gudkov, "Applications of Mueller matrix polarimetry to biological and agricultural diagnostics: A review," Appl. Sci. 12, 5258 (2022). 
  23. O. Arteaga and S. Bian, Optical Polarimetric Modalities for Biomedical Research (Springer Cham, Switzerland, 2023), pp. 77-99. 
  24. B. Al Bugami, Y. Su, C. Rodriguez, A. Lizana, J. Campos, M. Durfort, R. Ossikovski, and E. Garcia-Caurel, "Characterization of vine, Vitis vinifera, leaves by Mueller polarimetric microscopy," Thin Solid Films. 764, 139594 (2023). 
  25. M. W. Kudenov, D. Krafft, C. G. Scarboro, C. J. Doherty, and P. Balint-Kurti, "Hybrid spatial-temporal Mueller matrix imaging spectropolarimeter for high throughput plant phenotyping," Appl. Opt. 62, 2078-2091 (2023).  https://doi.org/10.1364/AO.483870
  26. R. Chipman, W. S. T. Lam, and G. Young, Polarized Light and Optical Systems (CRC press, USA, 2018). 
  27. S.-Y. Lu and R. A. Chipman, "Interpretation of Mueller matrices based on polar decomposition," J. Opt. Soc. Am. A 13, 1106-1113 (1996).  https://doi.org/10.1364/JOSAA.13.001106
  28. Z.-Y. Cai, Y.-L. Lo, and C.-M. Chang, "Dual-rotator Mueller matrix polarimeter for high-accuracy and high-precision measurements of glucose concentration," Optik 245, 167662 (2021). 
  29. J. Schanda, Colorimetry: Understanding the CIE System (John Wiley & Sons, USA, 2007). 
  30. M. E. Deroche and J. M. Briantais, "Absorption spectra of chlorophyll forms, β-carotene and lutein in freeze-dried chloroplasts," Photochem. Photobiol. 19, 233-240 (1974).  https://doi.org/10.1111/j.1751-1097.1974.tb06504.x
  31. Y. Ohno, "CIE fundamentals for color measurements," in Proc. IS&Ts NIP16: 2000 International Conference on Digital Printing Technologies (Vancouver, CA, Oct. 16-20, 2000), pp. 540-545.