• Title/Summary/Keyword: Wave plates

Search Result 322, Processing Time 0.025 seconds

Wave propagation analysis of carbon nanotubes reinforced composite plates

  • Mohammad Hosseini;Parisa Chahargonbadizade;Mohammadreza Mofidi
    • Structural Engineering and Mechanics
    • /
    • v.88 no.4
    • /
    • pp.335-354
    • /
    • 2023
  • In this study, analysis of wave propagation characteristics for functionally graded carbon nanotube-reinforced composite (FG-CNTRC) nanoplates is performed using first-order shear deformation theory (FSDT) and nonlocal strain gradient theory. Uniform distribution (UD) and three types of functionally graded distributions of carbon nanotubes (CNTs) are assumed. The effective mechanical properties of the FG-CNTRC nanoplate are assumed to vary continuously in the thickness direction and are approximated based on the rule of mixture. Also, the governing equations of motion are derived via the extended Hamilton's principle. In numerical examples, the effects of nonlocal parameter, wavenumber, angle of wave propagation, volume fractions, and carbon nanotube distributions on the wave propagation characteristics of the FG-CNTRC nanoplate are studied. As represented in the results, it is clear that the internal length-scale parameter has a remarkable effect on the wave propagation characteristics resulting in significant changes in phase velocity and natural frequency. Furthermore, it is observed that the strain gradient theory yields a higher phase velocity and frequency compared to those obtained by the nonlocal strain gradient theory and classic theory.

A novel four variable refined plate theory for wave propagation in functionally graded material plates

  • Fourn, Hocine;Atmane, Hassen Ait;Bourada, Mohamed;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.27 no.1
    • /
    • pp.109-122
    • /
    • 2018
  • In This work an analysis of the propagation of waves of functionally graduated plates is presented by using a high order hyperbolic (HSDT) shear deformation theory. This theory has only four variables, which is less than the theory of first order shear deformation (FSDT). Therefore, a shear correction coefficient is not required. Unlike other conventional shear deformation theories, the present work includes a new field of displacement which introduces indeterminate integral variables. The properties of materials are supposed classified in the direction of the thickness according to two simple distributions of a power law in terms of volume fractions of constituents. The governing equations of the wave propagation in the functionally graded plate are derived by employing the Hamilton's principle. The analytical dispersion relation of the functionally graded plate is obtained by solving an eigenvalue problem. The convergence and the validation of the proposed theoretical numerical model are performed to demonstrate the efficacy of the model.

NATURAL CONVECTION BETWEEN TWO HORIZONTAL PLATES WITH SMALL MAGNITUDE NON-UNIFORM TEMPERATURE IN THE LOWER PLATE : Pr=0.7 (아래 평판이 미소한 불균일 온도를 갖는 두 수평 평판 사이에서의 자연 대류 : Pr=0.7)

  • Yoo, Joo-Sik
    • Journal of computational fluids engineering
    • /
    • v.18 no.2
    • /
    • pp.35-40
    • /
    • 2013
  • Natural convection of air with Pr=0.7 between two horizontal plates with small magnitude non-uniform temperature distribution[${\in}{\Delta}Tsin({\kappa}X/H)$, H : gap width, X : horizontal coordinate] in the lower plate is numerically(${\in}=0.01$) investigated. In the conduction-dominated regime with $Ra{\leq}1700$, two upright cells are formed over one wave length($2{\pi}/{\kappa}$). For small wave number, the flow becomes unstable with increase of Rayleigh number, and multicellular convection occurs above a critical Rayleigh number. The flow patterns are classified by the number of eddies over one wave length. When ${\kappa}=1$, a transition of $2{\rightarrow}4{\rightarrow}6$ eddy flow occurs with increase of Rayleigh number, and no hysteresis phenomenon is observed. Dual and triple solutions are found for ${\kappa}=1$, and transitions of $10{\rightarrow}8$, $8{\rightarrow}6$, $6{\rightarrow}4{\rightarrow}2$ eddy flow occur with decrease of Rayleigh number.

AN IN-SITU YOUNG'S MODULUS MEASUREMENT TECHNIQUE FOR NUCLEAR POWER PLANTS USING TIME-FREQUENCY ANALYSIS

  • Choi, Young-Chul;Yoon, Doo-Byung;Park, Jin-Ho;Kwon, Hyun-Sang
    • Nuclear Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.327-334
    • /
    • 2009
  • Elastic wave is one of the most useful tools for non-destructive tests in nuclear power plants. Since the elastic properties are indispensable for analyzing the behaviors of elastic waves, they should be predetermined within an acceptable accuracy. Nuclear power plants are exposed to harsh environmental conditions and hence the structures are degraded. It means that the Young's modulus becomes unreliable and in-situ measurement of Young's modulus is required from an engineering point of view. Young's modulus is estimated from the group velocity of propagating waves. Because the flexural wave of a plate is inherently dispersive, the group velocity is not clearly evaluated in temporal signal analysis. In order to overcome such ambiguity in estimation of group velocity, Wigner-Ville distribution as the time-frequency analysis technique was proposed and utilized. To verify the proposed method, experiments for steel and acryl plates were performed with accelerometers. The results show good estimation of the Young's modulus of two plates.

Evaluation of Flaws in Adhesively Bonded Joint using Ultrasonic Signal Analysis (초음파 신호분석을 이용한 접착접합 이음의 결함평가)

  • Hwang, Yeong-Taik;Oh, Seung-Kyu;Han, Jun-Young;Jang, Chul-Sup;Yun, Song-Nam;Yi, Won;Kim, Hwan-Tae
    • Journal of Welding and Joining
    • /
    • v.22 no.2
    • /
    • pp.38-45
    • /
    • 2004
  • Ultrasonic signals transmitted through adhesively bonded plates were used to evaluate parameters related to attenuation and frequency in the adhesively bonded joint. The kinds of bonding materials with a different bonding thickness of constant pressure were used. And ultrasonic diagnosis was evaluated by p-wave sensor of 10MHz. FFT has been performed to determine bond-layer parameters such as effective thickness and frequency for adhesively bonded joint of A16061 plates in comparison with measured to theoretical ratios. When variable thickness exists, the ultrasonic spectrum was changed the frequency wave. The more materials thickness and the higher the frequency, the larger shift was observed. Measured ratios for cases of bond thickness and variety bonding materials are then used to determine bond parameters. The results show that the technique can be applied to the characterization of adhesively bonded joint.

Performance Comparison of Heat Transfer Plates for Cooling Tower Air Heater Through Numerical Analysis (냉각탑 공기가열기용 전열판의 수치해석적 성능 비교)

  • Lee, Eul-Jong;Kim, Jung-Sik;Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.5676-5683
    • /
    • 2012
  • In this study, numerical analysis was performed on three shapes of heat transfer plates (chevron, wave and dimple type), which are currently used as fillers of cooling towers. Results show that heat transfer rates per consumed power were larger for enhanced plates as compared with that of plain plate. Highest heat transfer coefficient was obtained for wave shape followed by chevron and dimple shape. For wave shape, cross corrugations induced significant mixing of fluids, which enhanced the heat transfer. Friction factor yielded a similar trend with the heat transfer coefficient. However, heat transfer rate and pressure drop per sheet was the largest for chevron shape, due to the largest heat transfer area per sheet.

Impact Response Behaviors of Laminated Composite Plates Subjected to the Transversely Impact of a Steel Ball (강구에 의한 횡방향 충격을 받는 적층복합판의 충격 응답 거동)

  • 김문생;김남식;박승범;백인환
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.44-56
    • /
    • 1993
  • The purpose of this paper is to analyze the impact response behaviors of glass/epoxy laminated composite plates subjected to the transversely impact of a steel ball. For this purpose, dynamic finite element analysis based on the higher-order shear defomation plate theory is used to compute the contact forces, rebound velocity of a steel ball, and dynamic strain response histories. And low-velocity and high-velocity impact experiments were conducted to compare the results and compute the wave propagation velocities. The results obtained from impact experiments are in good agreement with those of dynamic finite element analysis. Also the wave propagation velocities obtained from high-velocity impact experiments and wave propagation theory agree well, and wave velocities were higher in the smaller radius of steel ball.

  • PDF

Effects of Rubber Loading on the Ultrasonic Backward Radiation Profile of Leaky Lamb Wave (고무 접합이 후방복사된 리키 램파 프로파일에 미치는 영향)

  • Song, Sung-Jin;Kwon, Sung-Duk;Jung, Min-Ho;Kim, Young-H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.5
    • /
    • pp.508-515
    • /
    • 2002
  • The characterization of adhesive property in multi-layer materials has been hot issue for a long time. In order to evaluate adhesive properties, we constructed fully automated system for the backward radiation of leaky Lamb wave. The backward radiation profiles were obtained for the bare steel plate and plates with rubber-loading. The rf waveforms and frequency spectra of backward radiation show the characteristics of involved leaky Lamb wave modes. As the thickness of rubber-loading increased, the amplitude of profile at the incident angle of $13.4^{\circ}$ exponentially decreased. Scanning the incident position over the partially rubber-loaded specimen shows good agreement with the actual rubber-loading. The backward radiation of leaky Lamb wave has great potential to evaluate the adhesive condition as well as material properties of plates.

Power Flow Analysis of Vibration of Coupled Plates Excited by a Point Force In an Arbitrary Direction (임의의 방향 점가진력에 의한 연성 평판 진동의 파워흐름해석)

  • 최재성;길현권;홍석윤
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.6
    • /
    • pp.181-192
    • /
    • 2001
  • The power flow analysis (PFA) has been performed to analyze the vibration of coupled plates excited by a point force in an arbitrary direction. The point force generates the out-of-plane vibration associated wish flexural waves and the in-plane vibration associated with longitudinal and shear waves. The energy governing equation for each type of waves was introduced and solved to Predict the vibrational energy density and intensity generated by the out-of-plane and in-plane components of the point force in an arbitrary direction. The wave transmission approach was used to consider the mode conversion at the joint of the coupled plates. Numerical results for vibrational energy density and intensity on the coupled plates were presented. Comparison of the results by PFA with exact results showed that PFA can be an effective tool to predict the spatial variation of the vibrational energy and intensity on the coupled plates at high frequencies.

  • PDF

A wave model of two identical beams coupled by a plate for a mid-frequency analysis (중주파수 해석을 위한 웨이브 모형 연구: 두개의 보와 판 연성계)

  • Thompson, D.J.;Ferguson, N.S.;Yoo, Ji-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.771-775
    • /
    • 2006
  • There has been much effort to find suitable methods for structural analysis in the mid-frequency region where traditional low frequency methods have increasing uncertainties whilst statistical energy analysis is not strictly applicable. Systems consisting of relatively stiff beams coupled to flexible plates have a particularly broad mid-frequency region where the beams support only a few modes whilst the plate has a high modal density and modal overlap. A system of two parallel beams coupled to a plate is investigated based on the wave method, which is an approximate method. The wave model is extended from a single-beam-plate system, to a plate with two identical beams which is modelled using a symmetric-anti symmetric technique. Experimental results such as powers and energy ratios show the validity of the analytical wave models.

  • PDF