• Title/Summary/Keyword: Wave phase gradient

Search Result 47, Processing Time 0.034 seconds

A study on the combustion instability in a bluffbody dump combustor (가스터빈 연소기의 화염 불안정성에 관한 연구)

  • Lee, Byeong-Jun;Preston, L.H.;Santavicca, D.A.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.7
    • /
    • pp.1022-1029
    • /
    • 1998
  • The relation of the inlet fuel distribution, velocity, and overall equivalence ratio to the stability of a lean burning no-swirl dump combustor was examined. Premixed or partially premixed natural gas was introduced into the air stream, which flowed to the dump region through an annular inlet pipe. Inlet air was preheated upto 400 deg.C. Combustion instability was observed to occur at higher value of equivalence ratio (> 0.6) as the degree of unpremixedness was increased. Instabilities exhibited a dominant frequency of ~ 500 Hz, which corresponded to a half wave mode of combustor. CH chemiluminescence and pressure fluctuations were in-phase when combustion instabilities occurred. Acetone LIF images revealed that there was a strong fuel concentration gradient across the inlet annulus. Phase resolved OH LIF images showed that inlet fuel distribution was affected by the combustion instabilities.

RCS Characteristic of Electromagnetic Gradient Surface Due to Incident Angle and Polarization (Electromagnetic Gradient Surface의 입사각과 편파에 따른 RCS 특성 분석)

  • Lim, Yo-Han;Kim, Young-Sub;Yoon, Young-Joong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.9
    • /
    • pp.840-846
    • /
    • 2011
  • In this paper, reflection and RCS characteristic of the EGS(Electromagnetic Gradient Surface) due to incident angle and polarization is analyzed. Incident angle, ${\theta}_i$, is rotated from $0^{\circ}$ to $50^{\circ}$ with $10^{\circ}$ steps and perpendicular and parallel polarization of incident wave are also considered each incident angle. Reflection and RCS characteristic is not much affected by variation of polarization for normal incidence(${\theta}_i=0^{\circ}$). Reflection pattern has different characteristic due to variation of incident angle and polarization but the EGS has about 2 dB of RCS difference due to polarization in RCS characteristic.

First-principles Study on the Magnetic Properties of Gd doped Bithmuth-Telluride (Gd 도핑된 비스무스 텔루라이드의 자기적 성질에 대한 제일원리 계산 연구)

  • Van Quang, Tran;Kim, Miyoung
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.2
    • /
    • pp.39-44
    • /
    • 2016
  • Determination of the structural, electronic, and magnetic properties of the magnetically doped bismuth-telluride alloys are drawing lots of interest in the fields of the thermoelectric application as well as the research on magnetic interaction and topological insulator. In this study, we performed the first-principles electronic structure calculations within the density functional theory for the Gd doped bismuth-tellurides in order to study its magnetic properties and magnetic phase stability. All-electron FLAPW (full-potential linearized augmented plane-wave) method is employed and the exchange correlation potentials of electrons are treated within the generalized gradient approximation. In order to describe the localized f-electrons of Gd properly, the Hubbard +U term and the spin-orbit coupling of the valence electrons are included in the second variational way. The results show that while the Gd bulk prefers a ferromagnetic phase, the total energy differences between the ferromagnetic and the antiferromagnetic phases of the Gd doped bismuth-telluride alloys are about ~1meV/Gd, indicating that the stable magnetic phase may be changed sensitively depending on the structural change such as defects or strains.

Clinical Usefulness of Phase-Contrast Cine MRI Evaluation in Patients with Cervical Myelopathy (경추 척수병증 환자에 있어서 Phase-Contrast Cine MRI 평가의 임상적 유용성)

  • Lim, Jeong-Hwan;Song, Jun-Hyeok;Shin, Kyu-Man;Kim, Sung-Hak
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.12
    • /
    • pp.1634-1641
    • /
    • 2000
  • Objective : The cerebrospinal fluid(CSF) pulsates within the craniospinal axis in response to rhythmic cerebral blood volume variation during the cardiac cycle. The aim of this study is to characterize the normal and abnormal CSF flow and its waveforms in the cervical spinal subarachnoid space. Methods : The magnetic resonance(MR) images were obtained with 1.5 T(GE Signa, GE Medical Systems, Milwaukee, USA) unit using the 2 dimensional cine PC(phase contrast) sequence with cardiac gating and gradient recalled echo imaging. This pulse sequence yielded 16 quantitative flow-encoded images per cardiac cycle. Sagittal and axial images of the cervical spinal CSF space were obtained, and target sites were analyzed for characteristic CSF flow (TR=50ms, TE=12.5-15ms). The region of interest(ROI) was 1mm 3 in volume. Twenty six persons were included in this study : 10 healthy volunteers and 16 patients with cervical myelopathy. The post-operative cine MR study were also done in five patients. Results : The normal CSF pulsation dynamics in the cervical spine showed discrete systolic and diastolic components. The CSF flow revealed a sine wave pattern, in which the systolic phase was shorter than the diastolic phase(ratio=2 : 3). The patient group revealed decreased amplitudes of the CSF flow and irregularly distored flow waves. The systolic phase was elongated in the ROI above the stenotic level, whereas the diastolic phase was lengthened below the level. In the postoperative images, the abnormal pattern and amplitude were found to be corrected. Conclusion : From these results, the authors believe that the CSF flow study provides valuable informations regarding the extent of cervical stenosis and may be useful for the surgical planning and post-operative evaluation.

  • PDF

Development of the RE indirect-heating LPE furnace and the effect of impurity in YIG film on the MSSW properties

  • Fujino, M.;Fujii, T.;Sakabe, Y.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.6
    • /
    • pp.288-291
    • /
    • 2002
  • We developed a new RF indirect-heating LPE furnace. The thermal gradient of our newly developed furnace is less than that of direct heating, and is as gentle as that of the resistance-heating LPE furnace. With this new furnace, the heating and/or cooling is faster than that of the resistance-heating furnace. Impurity-doped YIG film was grown from a $PbO-B_{2}O_{3}$, based flux on a (111) GGG substrate. To study the effect of the impurities on the MSSW threshold power and the saturation response time, we used two microstrip lines to excite and propagate the MSSW at 1.9 GHz. The MSSW threshold power and saturation response time was found to be related to the $\Delta$H.

Correlation between Structures and Magnetism in Iron: Ferromagnetism and Antiferromagnetism

  • Lee, Dong-Kook;Hong, Soon-Cheol
    • Journal of Magnetics
    • /
    • v.12 no.2
    • /
    • pp.68-71
    • /
    • 2007
  • Even a pure bulk Fe has a complicated magnetic phase and its magnetism is still needed to be clarified. In this study we investigated the magnetism of bcc and fcc bulk Fe with total energy calculations as functions of atomic volume. The full-potential linearized augmented plane wave method was adopted within a generalized gradient approximation. The ground state of bulk Fe is confirmed to be of ferromagnetic (FM) bcc. For fcc structured Fe an antiferromagnetic (AFM) state is more stable compared to FM states which exist as low spin and high spin states. The stable AFM states were found to accompany a tetragonal distortion, while the FM states remained in a cubic symmetry. At an expanded lattice constant a high spin FM state was calculated to be able to be stabilized with significant enhanced magnetic moment compared to the value of the ground state, bcc FM.

Nominal Wake Measurement for KVLCC2 Model Ship in Regular Head Waves at Fully Loaded Condition (선수 규칙파 중 만재상태의 KVLCC2 모형선 공칭반류 계측)

  • Kim, Ho;Jang, Jinho;Hwang, Seunghyun;Kim, Myoung-Soo;Hayashi, Yoshiki;Toda, Yasuyuki
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.5
    • /
    • pp.371-379
    • /
    • 2016
  • In the ship design process, ship motion and propulsion performance in sea waves became very important issues. Especially, prediction of ship propulsion performance during real operation is an important challenge to ship owners for economic operation in terms of fuel consumption and route-time evaluation. Therefore, it should be considered in the early design stages of the ship. It is thought that the averaged value and fluctuation of effective inflow velocity to the propeller have a great effect on the propulsion performance in waves. However, even for the nominal velocity distribution, very few results have been presented due to some technical difficulties in experiments. In this study, flow measurements near the propeller plane using a stereo PIV system were performed. Phase-averaged flow fields on the propeller plane of a KVLCC2 model ship in waves were measured in the towing tank by using the stereo PIV system and a phase synchronizer with heave motion. The experiment was carried out at fully loaded condition with making surge, heave and pitch motions free at a forward speed corresponding to Fr=0.142 (Re=2.55×106) in various head waves and calm water condition. The phase averaged nominal velocity fields obtained from the measurements are discussed with respect to effects of wave orbital velocity and ship motion. The low velocity region is affected by pressure gradient and ship motion.

Energetic Electron and Proton Interactions with Pc5 Ultra Low Frequency (ULF) Waves during the Great Geomagnetic Storm of 15-16 July 2000

  • Lee, Eunah;Mann, Ian R.;Ozeke, Louis G.
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.145-158
    • /
    • 2022
  • The dynamics of the outer zone radiation belt has received a lot of attention mainly due to the correlation between the occurrence of enhancing relativistic electron flux and spacecraft operation anomalies or even failures (e.g., Baker et al. 1994). Relativistic electron events are often observed during great storms associated with ultra low frequency (ULF) waves. For example, a large buildup of relativistic electrons was observed during the great storm of March 24, 1991 (e.g., Li et al. 1993; Hudson et al. 1995; Mann et al. 2013). However, the dominant processes which accelerate magnetospheric radiation belt electrons to MeV energies are not well understood. In this paper, we present observations of Pc5 ULF waves in the recovery phase of the Bastille day storm of July 16, 2000 and electron and proton flux simultaneously oscillating with the same frequencies as the waves. The mechanism for the observed electron and proton flux modulations is examined using ground-based and satellite observations. During this storm time, multiple packets of discrete frequency Pc5 ULF waves appeared associated with energetic particle flux oscillations. We model the drift paths of electrons and protons to determine if the particles drift through the ULF wave to understand why some particle fluxes are modulated by the ULF waves and others are not. We also analyze the flux oscillations of electrons and protons as a function of energy to determine if the particle modulations are caused by a ULF wave drift resonance or advection of a particle density gradient. We suggest that the energetic electron and proton modulations by Pc5 ULF waves provide further evidence in support of the important role that ULF waves play in outer radiation belt dyanamics during storm times.

Numerical Simulation of Solitary Wave Run-up with an Internal Wave-Maker of Navier-Stokes Equations Model (내부조파기법을 활용한 Navier-Stokes 방정식 모형의 고립파 처오름 수치모의)

  • Ha, Tae-Min;Kim, Hyung-Jun;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.9
    • /
    • pp.801-811
    • /
    • 2010
  • A three-dimensional numerical model called NEWTANK is employed to investigate solitary wave run-up with an internal wave-maker on a steep slope. The numerical model solves the spatially averaged Navier-Stokes equations for two-phase flows. The LES (large-eddy-simulation) approach is adopted to model the turbulence effect by using the Smagorinsky SGS (sub-grid scale) closure model. A two-step projection method is adopted in numerical solutions, aided by the Bi-CGSTAB (Bi-Conjugate Gradient Stabilized) method to solve the pressure Poisson equation for the filtered pressure field. The second-order accurate VOF (volume-of-fluid) method is used to track the distorted and broken free surface. A solitary wave is first internally generated and propagated over a constant water depth in the three-dimensional domain. Numerically predicted results are compared with analytical solutions and numerical errors are analyzed in detail. The model is then applied to study solitary wave run-up on a steep slope and the obtained results are compared with available laboratory measurements.

Finite Element Analysis of RF Coupler in Normal-Low Temperature (상온-저온 RF 커플러 유한요소해석)

  • Kim, Hansol;Lee, Hak Yong;Park, Chan;Lee, Jaeyeol;Lim, Dong Yeal;Yoo, Jeonghoon;Hyun, Myung Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1101-1107
    • /
    • 2014
  • A heavy ion accelerator is a device that accelerates heavy ions in the radio frequency (RF) range. The electric field that flows into the RF cavity continuously accelerates heavy ions in accordance with the phase of the input electromagnetic wave. For the purpose, it is necessary to design a coupler shape that can stably transfer the RF wave into the cavity. The RF coupler in a heavy ion accelerator has a large temperature difference between the input port and output port, which radiates the RF waves. It is necessary to consider the heat deflection on the RF coupler that occurs as a result of the rapid temperature gradient from an ultra-low temperature about 0 K to a room temperature about 300 K. The purpose of this study was to improve the system performance through an analysis of the intensity of the output electric field and temperature distribution considering various shapes of the RF coupler, along with an analysis of the durability considering the heat deflection and heat loss.