• Title/Summary/Keyword: Wave function

Search Result 1,669, Processing Time 0.022 seconds

Flood Travel Time Analysis using Two-dimensional Hydraulic Model in Yeong-san River Downstream (2차원 수리해석모형을 이용한 영산강 하류부의 홍수파 도달시간 분석)

  • Oh, Ji-Hwan;Jo, Jun-Won;Jang, Suk-Hwan;Choov, Jeong-Ho;Oh, Kyoung-Doo
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.446-457
    • /
    • 2018
  • Forecasting of flood wave travel time is very important in terms of river management and operation. Recently, the hydrological environment of has changed due to the construction of multi-function weir in the river. It is necessary to analyze flood wave travel time, including hydraulic structures in the channel. The flood wave travel time according to the discharge and downstream water level operating conditions was analyzed using HEC-RASver5.0.3 which is capable a two-dimentional analysis. This study showed nonlinear characteristics of flood wave travel times due to increase of discharge and operating conditions. The results of this study will be helpful for the operation of multi-function weir as well as the river operation.

A vibration based acoustic wave propagation technique for assessment of crack and corrosion induced damage in concrete structures

  • Kundu, Rahul Dev;Sasmal, Saptarshi
    • Structural Engineering and Mechanics
    • /
    • v.78 no.5
    • /
    • pp.599-610
    • /
    • 2021
  • Early detection of small concrete crack or reinforcement corrosion is necessary for Structural Health Monitoring (SHM). Global vibration based methods are advantageous over local methods because of simple equipment installation and cost efficiency. Among vibration based techniques, FRF based methods are preferred over modal based methods. In this study, a new coupled method using frequency response function (FRF) and proper orthogonal modes (POM) is proposed by using the dynamic characteristic of a damaged beam. For the numerical simulation, wave finite element (WFE), coupled with traditional finite element (FE) method is used for effectively incorporating the damage related information and faster computation. As reported in literature, hybrid combination of wave function based wave finite element method and shape function based finite element method can addresses the mid frequency modelling difficulty as it utilises the advantages of both the methods. It also reduces the dynamic matrix dimension. The algorithms are implemented on a three-dimensional reinforced concrete beam. Damage is modelled and studied for two scenarios, i.e., crack in concrete and rebar corrosion. Single and multiple damage locations with different damage length are also considered. The proposed methodology is found to be very sensitive to both single- and multiple- damage while being computationally efficient at the same time. It is observed that the detection of damage due to corrosion is more challenging than that of concrete crack. The similarity index obtained from the damage parameters shows that it can be a very effective indicator for appropriately indicating initiation of damage in concrete structure in the form of spread corrosion or invisible crack.

Applying Focused and Radial Shock Wave for Calcific Tendinitis of the Shoulder : Randomized Controlled Study

  • Kim, Jonggun;Oh, Changmin;Yoo, John;Yim, Jongeun
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.3
    • /
    • pp.356-362
    • /
    • 2022
  • Objective: Extracorporeal shock wave therapy (ESWT) is a nonsurgical treatment alternative to surgery for various musculoskeletal diseases that have traditionally been difficult to treat conservatively, including calcific tendinitis, tennis elbow, and plantar fasciitis. This study evaluated the effect of focused and radial shock wave therapy for calcific tendinitis of the shoulder. Design: Randomized controlled study Methods: Forty participants with calcific tendinitis were randomized into focused shock wave therapy (FSWT, n=20) and radial shock wave therapy (RSWT, n=20) groups. Patients were examined before and one week after treatment. Pain intensity was subjectively assessed using the visual analogue scale and function was assessed using the Constant-Murley score (CMS) and range of motion (ROM). Results: The results showed a significant decrease in pain and significant increase in shoulder mobility and function in both groups. However, FSWT was significantly more effective than RSWT, based on CMS and ROM assessment. Conclusions: Although it is possible to raise the energy intensity of RSWT to increase the depth at which the energy becomes dispersed, higher energy intensity is associated with a greater risk of severe neurovascular damage, and that high-intensity stimulation can cause adverse effects such as pain and petechiae. Therefore, FSWT is considered to be a safe and effective method for treating tendinous lesions while minimizing adverse effects. In conclusion, both FSWT and RSWT can reduce pain and increase mobility and function. FSWT can be considered as an alternative for calcific tendinitis of the shoulder.

Stress evaluation of tubular structures using torsional guided wave mixing

  • Ching-Tai, Ng;Carman, Yeung;Tingyuan, Yin;Liujie, Chen
    • Smart Structures and Systems
    • /
    • v.30 no.6
    • /
    • pp.639-648
    • /
    • 2022
  • This study aims at numerically and experimentally investigating torsional guided wave mixing with weak material nonlinearity under acoustoelastic effect in tubular structures. The acoustoelastic effect on single central frequency guided wave propagation in structures has been well-established. However, the acoustoelastic on guided wave mixing has not been fully explored. This study employs a three-dimensional (3D) finite element (FE) model to simulate the effect of stress on guided wave mixing in tubular structures. The nonlinear strain energy function and theory of incremental deformation are implemented in the 3D FE model to simulate the guided wave mixing with weak material nonlinearity under acoustoelastic effect. Experiments are carried out to measure the nonlinear features, such as combinational harmonics and second harmonics in related to different levels of applied stresses. The experimental results are compared with the 3D FE simulation. The results show that the generation combinational harmonic at sum frequency provides valuable stress information for tubular structures, and also useful for damage diagnosis. The findings of this study provide physical insights into the effect of applied stresses on the combinational harmonic generation due to wave mixing. The results are important for applying the guided wave mixing for in-situ monitoring of structures, which are subjected to different levels of loadings under operational condition.

Multi-station joint inversion of receiver function and surface-wave phase velocity data for exploration of deep sedimentary layers (심부 퇴적층 탐사를 위한 수신함수와 표면파 위상속도를 이용한 다측점 자료의 복합 역산)

  • Kurose, Takeshi;Yamanaka, Hiroaki
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.19-28
    • /
    • 2007
  • In this study, we propose a joint inversion method, using genetic algorithms, to estimate an S-wave velocity structure for deep sedimentary layers from receiver functions and surface-wave phase velocity observed at several sites. The method takes layer continuity over a target area into consideration by assuming that each layer has uniform physical properties, especially an S-wave velocity, at all the sites in a target area in order to invert datasets acquired at different sites simultaneously. Numerical experiments with synthetic data indicate that the proposed method is effective in reducing uncertainty in deep structure parameters when modelling only surface-wave dispersion data over a limited period range. We then apply the method to receiver functions derived from earthquake records at one site and two datasets of Rayleigh-wave phase velocity obtained from microtremor array surveys performed in central Tokyo, Japan. The estimated subsurface structure is in good agreement with the results of previous seismic refraction surveys and deep borehole data. We also conclude that the proposed method can provide a more accurate and reliable model than individual inversions of either receiver function data only or surface-wave dispersion data only.

A Study on Ultrasonic Wave Propagation Model in Multi-Layer Media (다중 접착계면의 초음파 전달 모델 연구)

  • Lim, Soo-Yong;Kim, Dong-Ryun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.3
    • /
    • pp.9-15
    • /
    • 2012
  • This research simulates the ultrasonic wave propagation in multi-layered media using generalized formular of system response function. We made the artificial defect specimen of a rocket motor and compared with experimental wave forms. The simulation results are coincide with measured waves and we found that the pulse echo method is able to detect unbond defect at liner-propellant interface.

The Damage Classification by Periodicity Detection of Ultrasonic Wave Signal to Occur at the Tire (타이어에서 발생하는 초음파 신호의 주기성 검출에 의한 손상 분별)

  • Oh, Young-Dal;Kang, Dae-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.6
    • /
    • pp.107-111
    • /
    • 2010
  • The damage of tire by damage material classification method is researched as used ultrasonic wave signal to occur at a tire during vehicle driving. Auto-correlation function after having passed through an envelope detecting preprocess is used for detecting periodicity because of occurring periodic ultrasonic waves signal with tire revolution. One revolution cycle time of a damaged tire and period that calculated auto-correlation function appeared equally in experiment. The result that can classification whether or not there was a tire damage is established.

Multistep Quantum Master Equation Theory for Response Functions in Four Wave Mixing Electronic Spectroscopy of Multichromophoric Macromolecules

  • Jang, Seog-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.997-1008
    • /
    • 2012
  • This work provides an alternative derivation of third order response functions in four wave mixing spectroscopy of multichromophoric macromolecular systems considering only single exciton states. For the case of harmonic oscillator bath linearly and diagonally coupled to exciton states, closed form expressions showing all the explicit time dependences are derived. These expressions can provide more solid physical basis for understanding 2-dimensional electronic spectroscopy signals. For more general cases of system-bath coupling, the quantum master equation (QME) approach is employed for the derivation of multistep time evolution equations for Green function-like operators. Solution of these equations is feasible at the level of 2nd order non-Markovian QME, and the new approach can account for inter-exciton coupling, dephasing, relaxation, and non-Markovian effects in a consistent manner.

Permeable Breakwaters Analysis by Using Boundary Element Method (경계요색법(境界要索法)에 의한 투과잠제(透過潛堤)의 해석기법(解析技法))

  • Kim, Nam Hyeong;Takikawa, Kiyoshi;Choi, Han Kuv
    • Journal of Industrial Technology
    • /
    • v.10
    • /
    • pp.69-72
    • /
    • 1990
  • In this paper the numerical method for the study of wave reflection from and transmission through submerged permeable breakwaters using the boundary element method is developed. The numerical analysis technique is based on the wave pressure function instead of velocity potential because it is difficult to define the velocity potential in the each region arising the energy dissipation. Also, the non-linear energy dissipation within the submerged porous structure is simulated by introducing the linear dissipation coefficient and the tag mass coefficient equivalent to the non-linear energy dissipation. For the validity of this analysis technique, the numerical results obtained by the present boundary element method are compared with those obtained by the other computation method. Good agreements are obtained and so the validity of the present numerical analysis technique is proved.

  • PDF

Structural Health Monitoring Methods using PZT-Actuated Flexural Vibration of Beams (PZT 에 의해 굽힘 가진을 받는 보의 구조건전도 모니터링)

  • Kim, Seung-Joon;Park, Jun-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.601-605
    • /
    • 2007
  • This paper describes the experimental method to monitor the structural integrity. The crack on structures changes the wave propagation characteristics of structures. To monitor this change, frequency dependent variation of dynamic stiffness of beam structures is obtained by using beam transfer function method, and its trends are compared to undamaged one for identifying the location and size of the crack. Piezoelectric actuators were used to generate flexural vibrations. It eliminated various restrictions of continuously measuring wave propagation characteristics and monitoring structural integrity. The structural integrity was identified with minimal number of measurements and smart structures employing PZT actuations.

  • PDF