• Title/Summary/Keyword: Wave front

Search Result 478, Processing Time 0.02 seconds

Fabrication and Evaluation of Diameter 1 m Off-axis Parabolic mirror (직경 1 m 비축포물면의 가공 및 평가)

  • Yang, Ho-Soon;Lee, Jae-Hyeob;Jeon, Byung-Hyug;Lee, Yun-Woo;Lee, Kyoung-Muk;Choi, Se-Chol;Kim, Jong-Min
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.4
    • /
    • pp.287-293
    • /
    • 2008
  • The collimator which makes a collimated beam, is an essential instrument for assembly and evaluation of telescopes. Recently, the Cassegrain type collimator has been widely used for its compact size as the focal length of high resolution cameras becomes longer. However, this kind of collimator has a disadvantage in that the secondary mirror is a heat source which can degrade the evaluation accuracy for an IR camera system. In this paper, we present the fabrication and measurement process for an off-axis parabolic mirror with the physical diameter pf 1 m, effective diameter 930 mm, and the focal length 6 m. After four months of works we obtained the final surface wave-front error of 30.4 nm rms ($\lambda$/138, ${\lambda}=4.2\;{\mu}m$), which is capable of evaluation of an IR camera as well as a visible camera.

A Study on the Prediction of Rock Classification Using Shield TBM Data and Machine Learning Classification Algorithms (쉴드 TBM 데이터와 머신러닝 분류 알고리즘을 이용한 암반 분류 예측에 관한 연구)

  • Kang, Tae-Ho;Choi, Soon-Wook;Lee, Chulho;Chang, Soo-Ho
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.494-507
    • /
    • 2021
  • With the increasing use of TBM, research has recently been conducted in Korea to analyze TBM data with machine learning techniques to predict the ground in front of TBM, predict the exchange cycle of disk cutters, and predict the advance rate of TBM. In this study, classification prediction of rock characteristics of slurry shield TBM sites was made by combining traditional rock classification techniques and machine learning techniques widely used in various fields with machine data during TBM excavation. The items of rock characteristic classification criteria were set as RQD, uniaxial compression strength, and elastic wave speed, and the rock conditions for each item were classified into three classes: class 0 (good), 1 (normal), and 2 (poor), and machine learning was performed on six class algorithms. As a result, the ensemble model showed good performance, and the LigthtGBM model, which showed excellent results in learning speed as well as learning performance, was found to be optimal in the target site ground. Using the classification model for the three rock characteristics set in this study, it is believed that it will be possible to provide rock conditions for sections where ground information is not provided, which will help during excavation work.

Development of a Silicon Carbide Large-aperture Optical Telescope for a Satellite (SiC를 이용한 대구경 위성용 망원경 제작)

  • Bae, Jong In;Lee, Haeng Bok;Kim, Jeong Won;Lee, Kyung Mook;Kim, Myung-Whun
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.2
    • /
    • pp.74-83
    • /
    • 2022
  • The entire process, from the raw material to the final system qualification test, has been developed to fabricate a large-diameter, lightweight reflective-telescope system for a satellite observation. The telescope with 3 anastigmatic mirrors has an aperture of 700 mm and a total mass of 66 kg. We baked a silicon carbide substrate body from a carbon preform using a reaction sintering method, and tested the structural and chemical properties, surface conditions, and crystal structure of the body. We developed the polishing and coating methods considering the mechanical and chemical properties of the silicon carbide (SiC) body, and we utilized a chemical-vapor-deposition method to deposit a dense SiC thin film more than 170 ㎛ thick on the mirror's surface, to preserve a highly reflective surface with excellent optical performance. After we made the SiC mirrors, we measured the wave-front error for various optical fields by assembling and aligning three mirrors and support structures. We conducted major space-environment tests for the components and final assembly by temperature-cycling tests and vibration-shock tests, in accordance with the qualifications for the space and launch environment. We confirmed that the final telescope achieves all of the target performance criteria.

Measurement of a Phase Plate Simulates Atmospheric Turbulence Depending on Laser Power (레이저 출력에 따른 난류 모사 위상판 측정)

  • Han-Gyol Oh;Pilseong Kang;Jaehyun Lee;Hyug-Gyo Rhee;Young-Sik Ghim
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.3
    • /
    • pp.99-105
    • /
    • 2023
  • The performance of astronomical telescopes can be negatively affected by atmospheric turbulence. To address this issue, techniques for atmospheric turbulence correction have been developed, requiring the simulation of atmospheric turbulence in the laboratory. The most practical way to simulate atmospheric turbulence is to use a phase plate. When measuring a phase plate that simulates strong turbulence, a Shack-Hartmann wave-front sensor is commonly used. However, the laser power decreases as it passes through the phase plate, potentially leading to a weak laser signal at the sensor. This paper investigates the need to control the laser power when measuring a phase plate that simulates strong atmospheric turbulence, and examines the effects of the laser power on the measured wavefront. For phase plates with relatively high Fried parameter r0, the laser power causes a variation of over 10% in r0. For phase plates with relatively low r0, the laser power causes a variation of less than 5%, which means that the influence of the laser power is negligible for phase plates that simulate strong atmospheric turbulence. Based on the system described in this paper, a phase plate simulating strong atmospheric turbulence can be measured at a laser power of 5 mW or higher. Therefore, controlling the laser's output power is necessary when measuring a phase plate for simulating atmospheric turbulence, especially for phase plates with low r0 values.

A Study on Real-Time Monitoring for Moisture Measurement of Organic Samples inside a Drying Oven using Arduino Based on Open-Source (오픈 소스 기반의 아두이노를 이용한 건조기 내 유기 시료의 실시간 수분측정 모니터링에 관한 연구)

  • Kim, Jeong-hun
    • Journal of Venture Innovation
    • /
    • v.5 no.2
    • /
    • pp.85-99
    • /
    • 2022
  • Dryers becoming commercially available for experimental and industrial use are classified to general drying oven, hot-air dryer, vacuum dryer, freezing dryer, etc. and kinds of them are various from the function, size and volume, etc. But the moisture measurement is not applied although it is important factor for the quality control and the performance improvement of products, and then now is very passive because the weight is weighed arbitrarily after dry-end. Generally the method for measuring moisture is divided by a direct measurement method and a indirect measurement method, and the former such as the change of weight or volume on the front and rear of separation of moisture, etc. is mainly used. Relatively a indirect measurement is very limited to apply due to utilize measurement apparatuses using temperature conductivity and micro-wave etc. In this research, we easily designed the moisture measurement system using the open-source based Arduino, and monitored moisture fluctuations and weight profiles in the real-time without the effect of external environment. Concretely the temperature-humidity and load cell sensors were packaged into a drying oven and the various change values were measured, and their sensors capable to operate 60℃ and 80℃ were selected to suitable for the moisture sensitive materials and the food dry. And also the performance safety using the organic samples of banana, pear, sawdust could be secured because the changes of evaporation rate as the dry time and temperature, and the measurement values of load cell appeared stable response characteristics through repeated experiments. Hereafter we judge that the reliability can be improved increasingly through the expansion of temperature-humidity range and the comparative analysis with CFD(Computational Fluid Dynamics) program.

The Regional Classification of Tidal Regime using Characteristics of Astronomical Tides, Overtides and Compound Tides in the Han River Estuary, Gyeonggi Bay (천문조, 배조 및 복합조 특성을 이용한 경기만 한강하구 구역별 조석체계 분류)

  • Yoon, Byung Il;Woo, Seung-Buhm;Kim, Jong Wook;Song, Jin Il
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.3
    • /
    • pp.149-158
    • /
    • 2015
  • In this study, we investigate tidal wave propagation characteristics, and classify regional tidal regime using tidal form number considered distribution of astronomical tide, overtides, and compound tides in the Han River Estuary, Gyeonggi Bay. The characteristics of the tidal wave propagation in main channels show dominance of major tidal constituents (e.g., $M_2$, $S_2$, $N_2$, $K_1$ and $O_1$) contributing to the astronomical tide however, distinct increasing of shallow water (e.g., $M_4$) and long period (e.g., $MS_f$) components toward up-estuary. Using the characteristics of tidal form number to astronomical tide, overtides, and compound tides, the regional tidal regime could be assorted into three regions. Firstly, a dominance area of astronomical tide was presented from open sea to a front of Incheon Harbor (Yeomha channel) and to north entrance of Seokmo channel. The area between south and north entrance of Yeomha channel and Ganghaw north channel classified into zone of showing strong shallow water components. It could be separated into upper estuary, upstream the Singok underwater dam, showed dominance of shallow overtides (e.g., $M_4$ and $MS_4$) water and long-term compound tides (e.g., $MS_f$) larger magnitude than astronomical tide. The shallow water components was earlier generated in lower part (south entrance) of Yeomha channel have strong bottom by effect of shallower and narrower compared with Seokmo channel. Tidal asymmetries of upper estuary cause by a development of overtides and compound tides are mainly controlled by influence of man-made structure.

Considerations of Environmental Factors Affecting the Detection of Underwater Acoustic Signals in the Continental Regions of the East Coast Sea of Korea

  • Na, Young-Nam;Kim, Young-Gyu;Kim, Young-Sun;Park, Joung-Soo;Kim, Eui-Hyung;Chae, Jin-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.2E
    • /
    • pp.30-45
    • /
    • 2001
  • This study considers the environmental factors affecting propagation loss and sonar performance in the continental regions of the East Coast Sea of Korea. Water mass distributions appear to change dramatically in a few weeks. Simple calculation with the case when the NKCW (North Korean Cold Water) develops shows that the difference in propagation loss may reach in the worst up to 10dB over range 5km. Another factor, an eddy, has typical dimensions of 100-200km in diameter and 150-200m in thickness. Employing a typical eddy and assuming frequency to be 100Hz, its effects on propagation loss appear to make lower the normal formation of convergence zones with which sonars are possible to detect long-range targets. The change of convergence zones may result in 10dB difference in received signals in a given depth. Thermal fronts also appear to be critical restrictions to operating sonars in shallow waters. Assuming frequency to be 200Hz, thermal fronts can make 10dB difference in propagation loss between with and without them over range 20km. An observation made in one site in the East Coast Sea of Korea reveals that internal waves may appear in near-inertial period and their spectra may exist in periods 2-17min. A simulation employing simple internal wave packets gives that they break convergence zones on the bottom, causing the performance degradation of FOM as much as 4dB in frequency 1kHz. An acoustic experiment, using fixed source and receiver at the same site, shows that the received signals fluctuate tremendously with time reaching up to 6.5dB in frequencies 1kHz or less. Ambient noises give negative effects directly on sonar performance. Measurements at some sites in the East Coast Sea of Korea suggest that the noise levels greatly fluctuate with time, for example noon and early morning, mainly due to ship traffics. The average difference in a day may reach 10dB in frequency 200Hz. Another experiment using an array of hydrophones gives that the spectrum levels of ambient noises are highly directional, their difference being as large as 10dB with vertical or horizontal angles. This fact strongly implies that we should obtain in-situ information of noise levels to estimate reasonable sonar performance. As one of non-stationary noise sources, an eel may give serious problems to sonar operation on or under the sea bottoms. Observed eel noises in a pier of water depth 14m appear to have duration time of about 0.4 seconds and frequency ranges of 0.2-2.8kHz. The 'song'of an eel increases ambient noise levels to average 2.16dB in the frequencies concerned, being large enough to degrade detection performance of the sonars on or below sediments. An experiment using hydrophones in water and sediment gives that sensitivity drops of 3-4dB are expected for the hydrophones laid in sediment at frequencies of 0.5-1.5kHz. The SNR difference between in water and in sediment, however, shows large fluctuations rather than stable patterns with the source-receiver ranges.

  • PDF

An Estimation of Concentration of Asian Dust (PM10) Using WRF-SMOKE-CMAQ (MADRID) During Springtime in the Korean Peninsula (WRF-SMOKE-CMAQ(MADRID)을 이용한 한반도 봄철 황사(PM10)의 농도 추정)

  • Moon, Yun-Seob;Lim, Yun-Kyu;Lee, Kang-Yeol
    • Journal of the Korean earth science society
    • /
    • v.32 no.3
    • /
    • pp.276-293
    • /
    • 2011
  • In this study a modeling system consisting of Weather Research and Forecasting (WRF), Sparse Matrix Operator Kernel Emissions (SMOKE), the Community Multiscale Air Quality (CMAQ) model, and the CMAQ-Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution (MADRID) model has been applied to estimate enhancements of $PM_{10}$ during Asian dust events in Korea. In particular, 5 experimental formulas were applied to the WRF-SMOKE-CMAQ (MADRID) model to estimate Asian dust emissions from source locations for major Asian dust events in China and Mongolia: the US Environmental Protection Agency (EPA) model, the Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model, and the Dust Entrainment and Deposition (DEAD) model, as well as formulas by Park and In (2003), and Wang et al. (2000). According to the weather map, backward trajectory and satellite image analyses, Asian dust is generated by a strong downwind associated with the upper trough from a stagnation wave due to development of the upper jet stream, and transport of Asian dust to Korea shows up behind a surface front related to the cut-off low (known as comma type cloud) in satellite images. In the WRF-SMOKE-CMAQ modeling to estimate the PM10 concentration, Wang et al.'s experimental formula was depicted well in the temporal and spatial distribution of Asian dusts, and the GOCART model was low in mean bias errors and root mean square errors. Also, in the vertical profile analysis of Asian dusts using Wang et al's experimental formula, strong Asian dust with a concentration of more than $800\;{\mu}g/m^3$ for the period of March 31 to April 1, 2007 was transported under the boundary layer (about 1 km high), and weak Asian dust with a concentration of less than $400\;{\mu}g/m^3$ for the period of 16-17 March 2009 was transported above the boundary layer (about 1-3 km high). Furthermore, the difference between the CMAQ model and the CMAQ-MADRID model for the period of March 31 to April 1, 2007, in terms of PM10 concentration, was seen to be large in the East Asia area: the CMAQ-MADRID model showed the concentration to be about $25\;{\mu}g/m^3$ higher than the CMAQ model. In addition, the $PM_{10}$ concentration removed by the cloud liquid phase mechanism within the CMAQ-MADRID model was shown in the maximum $15\;{\mu}g/m^3$ in the Eastern Asia area.