• Title/Summary/Keyword: Wave frequency

Search Result 4,100, Processing Time 0.032 seconds

A Study on the Prediction Function of Wind Damage in Coastal Areas in Korea (국내 해안지역의 풍랑피해 예측함수에 관한 연구)

  • Sim, Sang-bo;Kim, Yoon-ku;Choo, Yeon-moon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.69-75
    • /
    • 2019
  • The frequency of natural disasters and the scale of damage are increasing due to the abnormal weather phenomenon that occurs worldwide. Especially, damage caused by natural disasters in coastal areas around the world such as Earthquake in Japan, Hurricane Katrina in the United States, and Typhoon Maemi in Korea are huge. If we can predict the damage scale in response to disasters, we can respond quickly and reduce damage. In this study, we developed damage prediction functions for Wind waves caused by sea breezes and waves during various natural disasters. The disaster report (1991 ~ 2017) has collected the history of storm and typhoon damage in coastal areas in Korea, and the amount of damage has been converted as of 2017 to reflect inflation. In addition, data on marine weather factors were collected in the event of storm and typhoon damage. Regression analysis was performed through collected data, Finally, predictive function of the sea turbulent damage by the sea area in 74 regions of the country were developed. It is deemed that preliminary damage prediction can be possible through the wind damage prediction function developed and is expected to be utilized to improve laws and systems related to disaster statistics.

Three Level Buck Converter Utilizing Multi-bit Flying Capacitor Voltage Control (멀티비트 플라잉 커패시터의 전압제어를 이용한 3-레벨 벅 변환기)

  • So, Jin-Woo;Yoon, Kwang-Sub
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1006-1011
    • /
    • 2018
  • This paper proposes a three level buck converter utilizing multi-bit flying capacitor voltage control. The conventional three-level buck converter can not control the flying capacitor voltage, so that the operation is unstable or the circuit for controlling the flying capacitor voltage can not be applied to the PWM mode. Also when the load current is increased, an error occurs in the inductor voltage. The proposed structure can control the flying capacitor voltage in PWM mode by using differential difference amplifier and common mode feedback circuit. In addition, this paper proposes a 3bit flying capacitor voltage control circuit to optimize the operation of the three level buck converter depending on the load current, and a triangular wave generation circuit using the schmitt trigger circuit. The proposed 3-level buck converter is designed in $0.18{\mu}m$ CMOS process and has an input voltage range of 2.7V~3.6V and an output voltage range of 0.7V~2.4V. The operating frequency is 2MHz, the load current range is 30mA to 500mA, and the output voltage ripple is measured up to 32.5mV. The measurement results show a maximum power conversion efficiency of 85% at a load current of 130 mA.

Validation on the Bodywave Magnitude Estimation of the 2017 DPRK's Nuclear Test by Source Scaling (지진원 상대비율 측정법을 이용한 2017년 북한 핵실험의 실체파 규모 검증)

  • Kim, Tae Sung
    • Economic and Environmental Geology
    • /
    • v.51 no.6
    • /
    • pp.589-593
    • /
    • 2018
  • Democratic Peoples' Republic of Korea (DPRK) conducted the $6^{th}$ underground nuclear test at the Punggye-ri underground nuclear test site on September 27, 2017 12 hours 30 minutes of Korean local time. Comprehensive Nuclear-Test Ban Treaty Organization (CTBTO) under U.N. announced the body wave magnitude of the event was mb 6.1 while U.S. Geological Survey (USGS)'s calculation was mb 6.3. In this study, the differences of the magnitude estimates were investigated and verified. For this purpose, a source scaling between the $5^{th}$ and $6^{th}$ event, which's epicenters are 200 meters apart, was performed using seismic data sets from 30 broadband stations. The relative amplitude variations of the $6^{th}$ event compared to the $5^{th}$ event in the frequency domain was analyzed through the scaling. The increased amount of the bodywave magnitude $m_b$ for the $6^{th}$ event was calculated at 1 Hz, which was compared to those from USGS and CTBTO's calculations.

Effects of a Blindfold in Improving Concentration (착용형 시야 가리개가 집중력 향상에 미치는 영향)

  • Chung, Soon-Cheol;Choi, Mi-Hyun;Kim, Hyung-Sik
    • Science of Emotion and Sensibility
    • /
    • v.24 no.1
    • /
    • pp.37-44
    • /
    • 2021
  • A study was conducted on the effects of improving concentration by obscuring the peripheral vision using a blindfold that only covers the left and right sides of the field of view. The blindfold was trapezoidal in shape (5 × 4.8 cm in length and width) and was fixed to the left and right sides of the glasses with fixing clips. The material was a black-colored polypropylene (PP) and weighed 2.3 g including the clip. Qualitative and quantitative evaluations were performed on 50 healthy college students during the 15 days of using a blindfold. The qualitative analysis was performed utilizing a questionnaire regarding the improvement of concentration and the structure of the blindfold. EEG was measured while watching a learning video that required attention for quantitative analysis, and signal power and ERD/S analyses were performed for the mid β band (15-20 Hz) at the F4 position, which was the frontal lobe. The results showed that 40 of the 50 people reported improved concentration when they wore a vision shield, and 80% of the total subjects found it to be effective. From the quantitative evaluation, the ERS peak (p = 0.023) and the ERD + ERS peak value showed a significant difference (p = 0.017). In conclusion, concentration still improved even if only the left and right visual fields were used. Thus, it is expected that blindfolding could be used in various environments that require concentration.

Reliability of OperaVOXTM against Multi-Dimensional Voice Program to Assess Voice Quality before and after Laryngeal Microsurgery in Patient with Vocal Polyp (성대 용종 환자의 후두미세수술 전후 음성 평가에서 OperaVOXTM와 Multi-Dimensional Voice Program 간의 신뢰도 연구)

  • Kim, Sun Woo;Kim, So Yean;Cho, Jae Kyung;Jin, Sung Min;Lee, Sang Hyuk
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.31 no.2
    • /
    • pp.71-77
    • /
    • 2020
  • Background and Objectives OperaVOXTM (Oxford Wave Research Ltd.) is a portable voice analysis software package designed for use with iOS devices. As a relatively cheap, portable and easily accessible form of acoustic analysis, OperaVOXTM may be more clinically useful than laboratory-based software in many situations. The aim of this study was to evaluate the agreement between OperaVOXTM and Multi-Dimensional Voice Program (MDVP; Computerized Speech Lab) to assess voice quality before and after laryngeal microsurgery in patient with vocal polyp. Materials and Method Twenty patients who had undergone laryngeal microsurgery for vocal polyp were enrolled in this study. Preoperative and postoperative voices were assessed by acoustic analysis using MDVP and OperaVOXTM. A five-seconds recording of vowel /a/ was used to measure fundamental frequency (F0), jitter, shimmer and noise-to-harmonic ratio (NHR). Results Several acoustic parameters of MDVP and OperaVOXTM related to short-term variability showed significant improvement. While pre-operative value of F0, jitter, shimmer, NHR was 155.75 Hz (male: 125.37 Hz, female: 183.37 Hz), 2.20%, 6.28%, 0.16, post-operative values of these parameter was 164.34 Hz (male: 129.42 Hz, female: 199.26 Hz), 2.15%, 5.18%, 0.14 Hz in MDVP. While pre-operative value of F0, jitter, shimmer, NHR was 168.26 Hz (male: 135.16 Hz, female: 201.37 Hz), 2.27%, 6.95%, 0.26, post-operative values of these parameters was 162.72 Hz (male: 128.267 Hz, female: 197.18 Hz), 1.71%, 5.36%, 0.20 in OperaVOXTM. There was high intersoftware agreement for F0, jitter, shimmer with intraclass correlation coefficient. Conclusion Our results showed that the short-term variability of acoustic parameters in both MDVP and OperaVOXTM were useful for the objective assessment of voice quality in patients who received laryngeal microsurgery. OperaVOXTM is comparable to MDVP and has high intersoftware reliability with MDVP in measuring the F0, jitter, and shimmer

A Study on the Underwater Channel Model based on a High-Order Finite Difference Method using GPUs (그래픽 프로세서를 이용한 고차 유한 차분식 기반 수중채널모델 연구)

  • Bae, Ho Seuk;Kim, Won-Ki;Son, Su-Uk;Ha, Wansoo
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.1
    • /
    • pp.11-20
    • /
    • 2021
  • As unmanned underwater systems have recently emerged, a high-speed underwater channel modeling technique, which is one of the most important techniques in the system, has received a lot of attention. In this paper, we proposed a high-speed sound propagation model and verified the applicability through quantitative performance analyses. We used a high-order finite difference method (FDM) for wave propagation modeling in the water, and a domain decomposition method was adopted using multiple general-purpose graphics processing units (GPUs) to increase the calculation efficiency. We compared the results of the model we proposed with the analytic solution in the half-infinite media and results of the Virtual Timeseries Experiment (VirTEX) model, which is based on the ray method. Finally, we analyzed the performance of the model quantitatively using numerical examples. Through quantitative analyses of the improvement in computational performance, we confirmed that the computational speed increases linearly as the number of GPUs increases. The computation times are increased by 2 times and 8 times, respectively, when the domain size of computation and the maximum frequency are doubled. We expect that the proposed high-speed underwater channel modeling technique is able to contribute to the enhancement of national defense as an underwater communication channel model and analysis tool to develop the underwater communication technique for the unmanned underwater system.

The mediation effect of grip strength trajectory on the association between exercise participation and life satisfaction among couples (중노년기 부부의 운동참여가 삶의 만족도에 미치는 영향에 관한 악력 궤적의 매개효과)

  • Joo, Susanna;Jun, Hey Jung
    • 한국노년학
    • /
    • v.40 no.1
    • /
    • pp.91-109
    • /
    • 2020
  • This study aims to investigate the interdependence of Korean middle and old-aged couples in the association between exercise and life satisfaction through grip strength trajectory. Data were drawn from the nationally representative Korea Longitudinal Study of Aging (KLoSA) collected from 2006 to 2016. The sample included couples over 45 years of age in the first wave and participated in all six waves of the survey (Ncouple=1,997). There were three steps for analyses: correlation, parallel latent growth curve model, tests of indirect effects of the mediation paths. Covariates included in the models were husbands and wives' characteristics (age, education, work status, chronic diseases, marital satisfaction, contact frequency with friends or neighbors) and couple's household income. Results showed husbands' and wives' life satisfaction and grip strength were interdependent upon each other. Also, exercise participation of both husbands and wives was associated with both husbands' and wives' life satisfaction via the initial level of grip strength of husbands. Moreover, exercise participation of only husbands was associated with wives' life satisfaction through the initial grip strength of husbands. These results suggest the aging processes of middle and old-aged couples need to be understood in the context of gender dynamics and couple interdependence.

Variables Affecting Chinese University Students' Selection Factors for Korean Drama (중국 대학생의 한국 드라마 선택요인에 영향을 미치는 변인)

  • Liu, Li;Baek, Jongnam
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.5
    • /
    • pp.267-274
    • /
    • 2021
  • This study was designed to investigate the variables affecting Chinese university students' selection factors for Korean drama. Participants in this study were 379 university students from Hunan Province, China. An online survey program(www.wjx.cn) was used to collect data for this study. The tool of this study was 'a tool for measuring the selection factors of Korean Dramas', and it was composed of two areas: completeness of work and recognition. The results of this study are as follows: First, the completeness of work factor are higher than the recognition of Korean dramas by Chinese university students. Second, there are differences in the factors for selection Korean dramas according to the gender, grade, age, major, and Korean Drama watching frequency of Chinese university students. Third, when Chinese university students select Korean Dramas, their preferred genre influences the selection factors for the level of work completion and recognition. Finally, it was discussed according to the results of this study, and suggested for the qualitative re-leap of Korean Dramas in the global era. In order to expand the Korean Wave market in China, cultural contents must be developed to embrace the sentiment of Chinese university students, a propagation strategy that reflects the latest consumption trends of Chinese youth must be established, and the sophisticated visual beauty of Korean Dramas must be realized.

A Study on Roll Motion in Waves of Capsized Small Vessel Based on Loading Condition (전복사고 발생 소형선박의 적재상태를 고려한 파랑중 횡동요 연구)

  • KIM, Sung-Uk;KIM, In-Seob;SONG, Mi-Kyoung;LEE, Gun-Kyung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1031-1037
    • /
    • 2021
  • The frequency of marine accidents of vessels in Korea is steadily increasing and it is concentrated on small vessels with less than 10 tons of gross tonnage. Therefore, preventing capsizing accidents in small vessels is important to reduce the cost in terms of human and property damage due to such accidents. However, research on the seakeeping performance of small vessels has been insufficient, and there are no domestic and international regulations on seakeeping performance. Therefore, in this study, capsizing accidents caused by poor loading conditions were investigated by examining the adjudications of the small vessels in which the capsizing accidents occurred. Hydrostatic calculations and seakeeping performance analysis were performed for a representative vessel. A vessel generally performs a six-degree-of-freedom motion during operation. In this study, the response amplitude operator and response spectrum of a representative vessel were calculated to determine the roll motion. Moreover, a short-term statistical analysis of the vessel according to the loading conditions was performed for the wave stationary status for 3 h. From the results, it was estimated that, when the loading condition of a small vessel is poor, its roll motion increases, greatly reducing its stability.

QRAS-based Algorithm for Omnidirectional Sound Source Determination Without Blind Spots (사각영역이 없는 전방향 음원인식을 위한 QRAS 기반의 알고리즘)

  • Kim, Youngeon;Park, Gooman
    • Journal of Broadcast Engineering
    • /
    • v.27 no.1
    • /
    • pp.91-103
    • /
    • 2022
  • Determination of sound source characteristics such as: sound volume, direction and distance to the source is one of the important techniques for unmanned systems like autonomous vehicles, robot systems and AI speakers. There are multiple methods of determining the direction and distance to the sound source, e.g., using a radar, a rider, an ultrasonic wave and a RF signal with a sound. These methods require the transmission of signals and cannot accurately identify sound sources generated in the obstructed region due to obstacles. In this paper, we have implemented and evaluated a method of detecting and identifying the sound in the audible frequency band by a method of recognizing the volume, direction, and distance to the sound source that is generated in the periphery including the invisible region. A cross-shaped based sound source recognition algorithm, which is mainly used for identifying a sound source, can measure the volume and locate the direction of the sound source, but the method has a problem with "blind spots". In addition, a serious limitation for this type of algorithm is lack of capability to determine the distance to the sound source. In order to overcome the limitations of this existing method, we propose a QRAS-based algorithm that uses rectangular-shaped technology. This method can determine the volume, direction, and distance to the sound source, which is an improvement over the cross-shaped based algorithm. The QRAS-based algorithm for the OSSD uses 6 AITDs derived from four microphones which are deployed in a rectangular-shaped configuration. The QRAS-based algorithm can solve existing problems of the cross-shaped based algorithms like blind spots, and it can determine the distance to the sound source. Experiments have demonstrated that the proposed QRAS-based algorithm for OSSD can reliably determine sound volume along with direction and distance to the sound source, which avoiding blind spots.