• Title/Summary/Keyword: Wave forces

Search Result 597, Processing Time 0.029 seconds

A Mathematical Model of Return Flow outside the Surf Zone (쇄파대(碎波帶) 밖에서 return flow의 수학적(數學的) 모형(模型))

  • Lee, Jong Sup;Park, II Heum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.355-365
    • /
    • 1994
  • An analytical model of return flow is presented outside the surf zone. The governing equation is derived from the Navier-Stokes equation and the continuity. Each term of the governing equation is evaluated by the ordering analysis. Then the infinitesimal terms, i.e. the turbulent normal stress, the squared vertical velocity of water particle and the streaming velocity, are neglected. The driving forces of return flow are calculated using the linear wave theory for the shallow water approximation. Especially, the space derivative of local wave heights is described considering a shoaling coefficient. The vertical distribution of eddy viscosity is discussed to the customary types which are the constant, the linear function and the exponential function. Each coefficient of the eddy viscosities which sensitively affect the precision of solutions is uniquely decided from the additional boundary condition which the velocity becomes zero at the wave trough level. Also the boundary conditions at the bottom and the continuity relation are used in the integration of the governing equation. The theoretical solutions of present model are compared with the various experimental results. The solutions show a good agreement with the experimental results in the case of constant or exponential function type eddy viscosity.

  • PDF

A Study on the Breakwater Characteristics considering Seismic Magnitude (지진규모를 고려한 방파제 특성에 관한 연구)

  • Jeong, Jin-Ho;Lee, Kwang-Yeol;Lim, Chang-Kyu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.1
    • /
    • pp.71-83
    • /
    • 2014
  • Busan is located at the mouth of Nakdong River and if an earthquake occurs, it is very likely that the damage by the earthquake will be worse as liquefaction can happen in the sand layer, builtup soil, and landfill ground due to amplification in the lower sedimentary layer that is well developed in the river mouth. Therefore, this study first examined the possibility of liquefaction in the replaced sand layer under breakwater using 14 earthquakes in 5.6-7.9 scale and artificial earthquakes including the seismic wave suggested in the standard specifications for seismic design of ports and fishing port facilities to evaluate the stability of breakwater which is the primary protective structure for port facilities against earthquakes. Second, analysis on characteristics of the seismic energy and acceleration response spectrum by size of earthquake was performed to suggest the most appropriate size of seismic wave for the condition in Korea. Third, finite element analysis was performed using the suggested seismic wave to study the characteristics of earthquake by finding the dynamic lateral displacement of breakwater and verifying the stability of structure and the displacement and forces occurring at geotextile. Results of the study showed that the possibility of liquefaction in the landfill and replaced sand layer, the dynamic lateral displacement of breakwater, and changes of geotextile are greatly affected by the subsurface ground (replaced sand layer).

A Study on Lashing Standards for Car Ferry Ships Sailing in Smooth Sea Areas (평수구역을 운항하는 여객선의 차량고박 기준에 관한 연구)

  • Kang, Byung-Sun;Jung, Chang-Hyun;Kim, Deug-Bong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • In recent years, cargo lashing has received much importance, to help prevent the sinking of passenger ships due to the failure of vehicle and cargo lashing during the transshipment of cargo. Consequently, the standards for lashing equipment and the structure of car ferries have been revised. According to the current standards, all vehicles loaded on a car ferry sailing in smooth sea areas must be secured if the wind speed and wave height exceed 7 m/s and 1.5 m, respectively. In this study, we measured the roll and pitch of a passenger ship sailing in smooth sea areas, and compared the measurements with the results of the New Strip Method (NSM). The vessel had a maximum pitch of 1.41° and a maximum roll of 1.37° at a wind speed of 6-8 m/s and a wave height of 0.5-1.0 m, and a maximum pitch of 1.49° and a maximum roll of 2.43° at a wind speed of 10-12 m/s and a wave height of 1.0-1.5 m. A comparison of the external forces due to the motion of the hull and the bearing capacity without lashing indicated that the bearing capacity was stronger. This suggests that vehicles without lashing will not slip or fall due to weather conditions. In future, the existing vehicle lashing standards can be revised after measuring the hull motions of various ships, and comparing the external force and bearing capacity, to establish more reasonable requirements.

Behavior Analysis and Control of a Moored Training Ship in an Exclusive Wharf (전용부두 계류중인 실습선의 선체거동 해석 및 제어에 관한 연구)

  • Cho, Ik-Soon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.2
    • /
    • pp.139-145
    • /
    • 2017
  • Recently, gusts, typhoon and tsunamis have been occurring more frequently around the world. In such an emergency situation, a moored vessel can be used to predict and analyze other vessel behavior, but if the mooring system is destroyed, marine casualties can occur. Therefore, it is necessary to determine quantitatively whether a vessel should be kept in the harbour or evacuate. In this study, moored ship safety in an exclusive wharf according to swell effects on motion and mooring load have been investigated using numerical simulations. The maximum tension exerted on mooring lines exceeded the Safety Working Load for intervals 12 and 15 seconds. The maximum bollard force also exceeded 35 tons (allowable force) in all evaluation cases. The surge motion criteria result for safe working conditions exceeded 3 meters more than the wave period 12 seconds with a wind speed of 25 knots. As a result, a risk rating matrix (risk category- very high risk, high risk and moderate risk) was developed with reference to major external forces such as wind force, wave height and wave periods to provide criteria for determining the control of capabilities of mooring systems to prevent accidents.

Estimating on the Erosion and Retreat Rates of Sea-cliff Slope Using the Datum-point in Pado-ri, the Western Coast of Korea (침식기준목을 이용한 파도리 해식애 사면의 침식·후퇴율 산정)

  • JANG, Dong-Ho;PARK, Ji-Hoon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.3
    • /
    • pp.71-82
    • /
    • 2012
  • This research was carried out to estimate annual erosion and retreat rates by using datum-point and to identify the characteristics and causes of seasonal variations of sea-cliff slope in Pado-ri, Taean-gun. In the result, the erosion and retreat rates of sea-cliff were increased from spring to summer. The rates were increased rapidly between August and October, caused by the effects of extreme weather events such as severe rainstorms and typhoons, etc. Since then, the erosion and retreat rates of sea-cliff were decreased gradually, but the rates were increased again in winter due to the storm surge and mechanical weathering resulting from the repeated freezing and thawing actions of bed rocks. The factors that affect erosion and retreat rates of sea-cliff include the number of days with antecedent participation and daily maximum wave height. In particular, it turned out that the erosion is accelerated by strong wave energy during storm surges and typhoons. The annual erosion and retreat rates of study area for the past two years(from May 2010 to May 2012) were approximately 44~60cm/yr in condition of differences in geomorphological and geological characteristics at each point. These erosion and retreat rates were found to be higher than results of previous researches. This is caused by coastal erosion forces strengthened by extreme weather events. The erosion and retreat process of sea-cliff in the study area is composed by denudation of onshore areas in addition to marine erosion(wave energy).

Geophysical Study on the Ultramafic Rocks of Chungnam Province, Korea: Characteristics of Seismic Velocity (충남지역 초염기성 암체의 지구물리학적 연구: 탄성파 속도 특성)

  • Suh, Man-Cheol;Woo, Young-Kyun;Song, Suck-Hwan;Tianyao, Hao
    • Journal of the Korean earth science society
    • /
    • v.21 no.3
    • /
    • pp.349-358
    • /
    • 2000
  • Compressional and shear wave velocities (Vp and Vs) and densities have been measured for serpentinite, amphibolite, amphibole and biotite schist, and gneiss from western part of Chungnam Province at room temperature. Ranges of the density are 2.6${\sim}$2.86g/cm$^3$ for serpentinite, 2.25${\sim}$2.81g/cm$^3$ for talc, and 2.74${\sim}$3.07g/cm$^3$ for metamorphic rocks. Of these rocks, talc shows wider ranges than serpentinite and amphibolites due to its metamorphic process from serpentinite. Values of Vp and Vs are 5719${\sim}$6062m/s and 2898${\sim}$3351m/s for serpentinites, 4019${\sim}$5478m/s and 2241/${\sim}$2976m/s for talc, 5375${\sim}$6372m/s and 3042${\sim}$3625m/s for amphibolite, 5290${\sim}$5499m/s and 2968${\sim}$3137m/s for schist, and 4788m/s and 2804m/s for gneiss, respectively. Velocity of P wave increases 1.47 times faster than S wave with increase of density. The results of seismic velocity measurement show anisotropy, higher velocity across than along the schistocity of rocks, especially in metamorphic rocks. This fact indicates that there were regional metamorphism related with tectonic forces. Values of seismic velocity increase with increasing pressure from 20 MPa to 70 MPa, especially in metamorphic rocks. Overall recalculated Vp and Vs values suggest that the serpentinite indicates for upper mantle in the respects of seismic characteristics, in spite of high degree of serpentinization. In addition, those of the amphibolite do for low crust, and gneiss and schist for upper crust.

  • PDF

Structural Response Analysis of a Tension Leg Platform in Multi-directional Irregular Waves (다방향 불규칙파중의 인장계류식 해양구조물의 구조응답 해석)

  • Lee, Soo-Lyong;Suh, Kyu-Youl;Lee, Chang-Ho
    • Journal of Navigation and Port Research
    • /
    • v.31 no.8
    • /
    • pp.675-681
    • /
    • 2007
  • A numerical procedure is described for estimating the effects of the multi-directional irregular waves on the structural responses of the Tension Leg Platform (TLP). The numerical approach is based on a three dimensional source distribution method for hydrodynamic forces, a three dimensional frame analysis method for structural responses, in which the superstructure of TLP is assumed to be flexible instead of rigid. Hydrodynamic and hydrostatic forces on the submerged surface of a TLP have been accurately calculated by excluding the assumption of the slender body theory. The hydrodynamic interactions among TLP members, such as columns and pontoons, and the structural damping are included in structural analysis. The spectral description used in spectral analysis of directional waves for the linear system of a TLP in the frequency domain is sufficient to completely define the structural responses. This is due to both the wave inputs and responses are stationary Gaussian random process of which the statistical properties in the amplitude domain are well known. The numerical results for the linear motion responses and tension variations in regular waves are compared with the experimental and numerical ones, which are obtained in Yoshida et al.(1983). The results of comparison confirmed the validity of the proposed approach.

Characteristics of Velocity Fields around 3-Dimensional Permeable Submerged Breakwaters under the Conditions of Salient Formation (설상사주 형성조건 하에 있는 3차원투과성잠제 주변에서 내부유속변동의 특성)

  • Lee, Kwang-Ho;Bae, Ju-Hyun;An, Sung-Wook;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.399-409
    • /
    • 2017
  • This study numerically investigates the characteristics of the velocity field including the average flow velocity, longshore current and turbulent kinetic energy acting as the main external forces of the salient formed behind the permeable submerged breakwaters. Shoreline response is also predicted by the longshore-induced flux. In this paper, a three-dimensional numerical wave tank based on the OLAFOAM, CFD open source code, is utilized to simulate the velocity field around permeable submerged breakwaters under the formation condition of salient. The characteristics of the velocity field around permeable submerged breakwaters with respect to the gap width between breakwaters and the installing position away from the shoreline under a range of regular waves for different wave height are evaluated. The numerical results revealed that as the gap width between breakwaters increases, the longshore currents become stronger. Furthermore, as the gap width becomes narrower, the point where flow converges moves from the center of the breakwater to the head part. As a result, it is possible to understand the formation of the salient formed behind the submerged breakwaters. In addition, it was found that the longshore currents caused by the gap width between breakwaters and the installation position away from the shoreline are closely related to the turbulent kinetic energy.

A Quasi-nonlinear Numerical Analysis Considering the Variable Membrane Tension of Vertical Membrane Breakwaters (연직 막체방파제의 변동 막체장력을 고려한 준 비선형 수치해석)

  • Chun, In-Suk;Kim, Sun-Sin;Park, Hyun-Ju
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.4
    • /
    • pp.290-300
    • /
    • 2009
  • The existing numerical methods on the vertical membrane breakwater have employed a linear analysis where the variable membrane tension occurring during membrane motions is assumed to be very negligible compared to the initial tension. In the present study, a quasi-nonlinear analysis is attempted such that the temporary tension of the membrane is substituted by the average tension for a wave period that is sought by an iterative calculation. The results showed that with the increase of the wave period the reflection coefficients appeared larger and the transmission coefficients smaller compared to the results of the linear analysis. The application of the quasi-nonlinear analysis also showed that the performance of the structure is closely dependent on the horizontal deformation of the membrane. In order to suppress the horizontal deformation, it may be required to take the larger initial tension of the membrane or to put additional mooring lines in the middle of the vertical faces of the membrane. But for theses methods to be effective, a largely sized surface float should be installed to secure enough buoyancy to support such downward forces.

A performance study and conceptual design on the ramp tabs of the thrust vector control (추력방향제어장치인 램 탭의 개념설계 및 성능 연구)

  • Kim, Kyoung-Rean;Ko, Jae-Myoung;Park, Soon-Jong;Park, Jong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3068-3073
    • /
    • 2007
  • Aerodynamic forces and moments have been used to control rocket propelled vehicles. If control is required at very low speed, Those systems only provide a limited capability because aerodynamic control force is proportional to the air density and low dynamic pressure. But thrust vector control(TVC) can overcome the disadvantages. TVC is the method which generates the side force and roll moment by controlling exhausted gas directly in a rocket nozzle. TVC is classified by mechanical and fluid dynamic methods. Mechanical methods can change the flow direction by several objects installed in a rocket nozzle exhaust such as tapered ramp tabs and jet vane. Fluid dynamic methods control the flight direction with the injection of secondary gaseous flows into the rocket nozzle. The tapered ramp tabs of mechanical methods are used in this paper. They installed at the rear in the rocket nozzle could be freely moved along axial and radial direction on the mounting ring to provide the mass flow rate which is injected from the rocket nozzle. In this paper, the conceptual design and the performance study on the tapered ramp tabs of the thurst vector control has been carried out using the supersonic cold flow system and shadow graph. Numerical simulation was also performed to study flow characteristics and interactions between ramp tabs. This paper provides to analyze the location of normal shock wave and distribution of surface pressure on the region enclosed by the tapered ramp tabs.

  • PDF