DOI QR코드

DOI QR Code

Behavior Analysis and Control of a Moored Training Ship in an Exclusive Wharf

전용부두 계류중인 실습선의 선체거동 해석 및 제어에 관한 연구

  • Cho, Ik-Soon (Department of Ship Operation, Korea Maritime & Ocean University)
  • 조익순 (한국해양대학교 해사대학 선박운항과)
  • Received : 2017.04.10
  • Accepted : 2017.04.27
  • Published : 2017.04.30

Abstract

Recently, gusts, typhoon and tsunamis have been occurring more frequently around the world. In such an emergency situation, a moored vessel can be used to predict and analyze other vessel behavior, but if the mooring system is destroyed, marine casualties can occur. Therefore, it is necessary to determine quantitatively whether a vessel should be kept in the harbour or evacuate. In this study, moored ship safety in an exclusive wharf according to swell effects on motion and mooring load have been investigated using numerical simulations. The maximum tension exerted on mooring lines exceeded the Safety Working Load for intervals 12 and 15 seconds. The maximum bollard force also exceeded 35 tons (allowable force) in all evaluation cases. The surge motion criteria result for safe working conditions exceeded 3 meters more than the wave period 12 seconds with a wind speed of 25 knots. As a result, a risk rating matrix (risk category- very high risk, high risk and moderate risk) was developed with reference to major external forces such as wind force, wave height and wave periods to provide criteria for determining the control of capabilities of mooring systems to prevent accidents.

최근 이상적인 자연현상으로 인해 돌풍, 태풍 및 쓰나미 등 비상상황이 자주 발생하고 있고, 이로 인해 항내 계류선박은 선체거동을 미리 예측하여 해석하고, 선체거동을 제어하지 못해 계류선박의 계류시스템이 손상되면 해양사고가 발생할 수 있다. 따라서 계류시스템의 손상이 예상되는 경우 정량적 판단에 의해 항내 계류할 것인지 아니면 항외로 피항할 것인지 결정할 필요가 있다. 본 연구에서는 외력에 의한 계류선박의 거동해석 및 계류시스템 제어를 위해 대학내 전용 부두에 계류중인 실습선을 대상으로 계류안전성을 평가하였다. 계류삭의 최대장력을 분석한 결과, 파주기 12초 및 15초인 경우에는 대부분 허용강도(S.W.L)를 초과하는 것으로 분석되었다. 계선주에 작용하는 최대견인력을 분석한 결과, 해당 위치에 설치된 지 노후화된 소형 계선주에 다수의 계류삭을 체결함으로서 모든 평가 Case에서 계선주 허용규격인 35톤을 초과하는 것으로 분석되었다. 선체동요 및 하역안전성 평가결과 파주기 12초 이상 및 풍속 25노트 조건에서는 Surge 운동의 한계값인 3.0미터를 초과하는 것으로 분석되었다. 그 결과를 토대로 계류시스템 제어를 위한 판단기준이 되는 풍속, 파고 및 파주기 등의 주요 외력조건별 고위험, 위험 및 보통 위험 등 3단계의 리스크 매트릭스(Risk Matrix)를 작성하여, 계류시스템 제어를 위한 판단기준이 되는 위기관리 대응매뉴얼로 활용할 수 있을 것으로 기대된다.

Keywords

References

  1. Cho, I. S.(2005), A Study on Dynamic Analysis of Moored Ship Motions by Tsunami, The Journal of Navigation and Port Research, Vol. 29, No. 8, pp. 661-666. https://doi.org/10.5394/KINPR.2005.29.8.661
  2. Cho, I. S., Y. S. Lee and Lee C. R.(2006), A Time Domain Analysis of Moored Ship Motions with Resonant Period of a Tsunami, The Journal of Navigation and Port Research, Vol. 30, No. 6, pp. 433-438. https://doi.org/10.5394/KINPR.2006.30.6.433
  3. Kang, W. S. and Park Y. S.(2016), A Basic Study on Safe Mooring Guide for Dangerous Goods Berths in Ul-san Port, Journal of the Korean Society of Marine Environmental & Safety, Vol. 22, No. 1, pp. 067-073. https://doi.org/10.7837/kosomes.2016.22.1.067
  4. Kim, S. Y., J. S. Kim, Y. D. Kim and Lee Y. S.(2016), A Study to Improve the Operation Criteria by Size of Ship in Ulsan Tank Terminal, Journal of the Korean Society of Marine Environmental & Safety, Vol. 22, No. 6, pp. 639-646. https://doi.org/10.7837/kosomes.2016.22.6.639
  5. Kubo, M., I. S. Cho, S. Sakakibara, E. Kobayashi and S. Koshimura(2005), The Influence of Tsunamis on Moored Ships and Ports, International Journal of Navigation and Port Research, Vol. 29, No. 4, pp. 319-325. https://doi.org/10.5394/KINPR.2005.29.4.319
  6. Kubo, M., K. Saito and T. Oki(1993), Approximate calculation of ship motions under the prevention system of ship separation from quay wall, Journal of Japan Institute of Navigation, Vol. 89, pp. 15-21. https://doi.org/10.9749/jin.89.15
  7. Kubo, M. and S. Sakakibara(1995), Effects of long period waves caused by wave groups and harbor oscillation in computation of wharf operation efficiency, Proceeding of Coastal Engineering, Japan Society of Civil Engineering, Vol. 42, pp. 931-935.
  8. Kwak, M. S. and Y. H. Moon(2014), A Study on Estimation of Allowable Wave Height for Loading and Unloading of the Ship Considering Ship Motion, Journal of the Korean Society of Civil Engineers, Vol. 34, No. 3, pp. 873-883. https://doi.org/10.12652/Ksce.2014.34.3.0873
  9. Ministry of Oceans and Fishery(2014), Harbour and Fishery Design Criteria, pp. 711-712.
  10. PIANC PTC II Working Group 24(1995), Criteria for Movement of Moored Ships in Harbours - A Practical Guide -, p. 7.

Cited by

  1. A Study on the Proper Crown Height of GT 100,000Ton Cruise ship and DWT 100,000Ton Container ship vol.24, pp.2, 2018, https://doi.org/10.7837/kosomes.2018.24.2.157
  2. 선박 접안용 계선주의 안전 강성 평가에 관한 연구 vol.43, pp.1, 2017, https://doi.org/10.5394/kinpr.2019.43.1.9
  3. A Study on Determining the Priority of Supervising Mooring Line while 125K LNG Moss Type Discharging at Pyeong Taek Gas Terminal vol.25, pp.3, 2017, https://doi.org/10.7837/kosomes.2019.25.3.278
  4. A Study on Improvement of Criteria for Mooring Safety Assessment in Single Point Mooring vol.25, pp.3, 2019, https://doi.org/10.7837/kosomes.2019.25.3.287
  5. A Study on the Allowable Range of Overhanging Berthing at the Port of Ulsan vol.25, pp.3, 2017, https://doi.org/10.7837/kosomes.2019.25.3.313
  6. Identification of Impact Factors in Ship-to-Ship Mooring Through Sensitivity Analysis vol.43, pp.5, 2017, https://doi.org/10.5394/kinpr.2019.43.5.310
  7. 돌풍 대비용 직주 배치에 따른 계류안전성 민감도 분석 연구 vol.26, pp.7, 2020, https://doi.org/10.7837/kosomes.2020.26.7.767
  8. 해상교통특성과 계류중인 선박의 Roll 동요량에 관한 연구 vol.27, pp.1, 2017, https://doi.org/10.7837/kosomes.2021.27.1.074