• Title/Summary/Keyword: Wave forces

Search Result 597, Processing Time 0.022 seconds

Analysis of Capsizing Phenomena of a Shop in Waves (파도중 선박의 전복 현상 해석)

  • 안창구;고창두
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.1 no.1
    • /
    • pp.27-38
    • /
    • 1995
  • In this paper, a program for the calculation of GZ curve for a ship in waves is developed and GZ curves for a ferry in the still water and in waves are calculated. And the added mass, damping, restoring forces and wave exciting forces are calculated by using the strip theory given by Salvesen, Tuck, Faltinsen. Capsizing simulations are perfoned in consideration if the nonlinear restoring forces of the ship in waves by using the Runge-Kutta 4-th method.

  • PDF

The Effect of Wave Pressure on Stability Rubble Mound Breakwater (사석식 경사방파제에 작용하는 파압이 제체 안정성에 미치는 영향)

  • Cheong, Gyu-Hyang;Lee, Yong-Dae;Lee, Byong-Moon;Jeong, Sam-Gi;Kim, Keun-Sup
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.579-584
    • /
    • 2009
  • Arrangement of the facilities for improving harbor functions depends on sea and land conditions such as the ship's arrival and departure conditions, waves and tide. And the plan and the size of the facilities depend much on harbor and marine environment condition such as cargo quantity, ship size, ship traffic and seawater circulation. Among these, waves have so much effect on a breakwater design that it is the most important to understand their characteristics and to apply them to breakwater design. Therefore, to analyze the effect of waves characteristics over a rubble mound breakwater, we have calculated wave pressure by using numerical analysis at each tide level and have analyzed the effect of wave pressure on structure stability by conducting the stability analysis with the wave pressure. As a result, it is found that during low and mean tide level time the biggest wave pressure is estimated near calm water level. But during high tide time, the biggest wave pressure is estimated in front of capping. And the stability analysis indicates also that a structure is most unstable when low tide time wave pressure is acting on. After reviewing the stability of a structure by applying vertical and horizon wave forces, it is concluded that safety factor is lower than ordinary time(max. about 15%), is also reviewed when designing a rubble mound breakwater.

  • PDF

Nonlinear Motion Responses of a Moored Ship beside Quay (안벽에 계류된 선박의 비선형 운동응답)

  • 이호영;임춘규;유재문;전인식
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.8-15
    • /
    • 2003
  • When a typoon sets into harbour, a moored ship shows erratic motions and even mooring line failure may occur. such troubles may be caused by harbour resonance phenomena, resulting in large motion amplitudes at low frequency, which is close ti the natural frequency of th moored ship. The nonlinear motions of a ship moored to quay are simulated under external forces due to wave, current including mooring forces in time domain. The forces due to waves are obtained from source and dipole distribution method in the frequency domain. The current forces are calculated by using slow motion maneuvering equation in the horizontal plane. The wind forces are calculated from the empirical formula of ABS and the mooring forces of ropes and fenders are modeled as linear spring.

Development of the Rudder Roll Control System of a Vessel in Irregular Waves (조타에 의한 선박의 횡요 감소시스템의 개발)

  • Lee Seung-Keon;Lee Gyoung-Woo;Hwang Sung-Jun;Kang Dong-Hoon
    • Journal of Navigation and Port Research
    • /
    • v.29 no.10 s.106
    • /
    • pp.839-845
    • /
    • 2005
  • A rudder roll control system is developed and analyzed to control the yawing and rolling motion of ship in irregular waves. The 4-DOF maneuvering equations of motion are derived to carry out the simulation of the motion of a ship and the wave forces are considered as the external forces of a ship in the simulation. The wave forces in the time domain analysis are generated from the frequency transfer function calculated by 3-D source distribution method. The rudder roll control system is developed by linear combination of PD rudder controllers of yawing and rolling motion. Rudder rate speed and Schilling rudder are considered to increase the roll reduction efficiency.

A Study on Developing the Rudder Roll Control System of a Vessel in Irregular Waves (조타에 의한 선박의 횡요 감소시스템의 개발에 관한 연구)

  • Lee Seung-Keon;Hwang Sung- Jun;Kang Dong-Hoon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.55-61
    • /
    • 2005
  • A rudder roll control system is developed and analyzed to control yawing and rolling motion of ship in irregular waves. The 4-DOF maneuvering equations of motion are derived to carry out the simulation of the motion of a ship and the wave forces are considered as the external forces of a ship in the simulation. The wave forces in the time domain analysis are generated from the frequency transfer function calculated by 3-D source distribution method. The rudder roll control system is developed by linear combination of PD rudder controllers of yawing and rolling motion Rudder rate speed and Schilling rudder are considered to increase roll reduction efficiency.

  • PDF

Interaction Effect between Caissons by Installation of New Caisson on Existing Caisson Breakwater in Second Order Stokes Wave Condition (비선형 규칙파 조건에서 기존 케이슨 방파제에 신규 케이슨 추가설치에 따른 케이슨들 간의 상호작용 영향 평가)

  • Park, Min Su
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.345-356
    • /
    • 2021
  • In order to increase the structural stability of existing caisson breakwater, the design and the construction is carried out by installation of new caissons on the back or the front of old caissons. In this study, we use the ANSYS AQWA program to analyze the wave forces acting on individual caisson according to effects of wave structure interaction when new caissons are additionally installed on existing caisson breakwater. Firstly, the wave force characteristics acting on the individual caisson were analyzed for each period (frequency) in the frequency domain. In time domain analysis, the dynamic wave force characteristics were strongly influenced by the distance between caissons on the frequency at which the unusual distribution of wave forces occurs.

A Study on the non -linearity of wave washer spring (웨이브 와셔 스프링의 비선형성에 관한 연구)

  • 이수종;왕지석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.3
    • /
    • pp.246-255
    • /
    • 1997
  • The wave washer springs are expected to behave non-linearly between forces and displace¬ments due to contractions of the height and due to expansions in radial direction. To find out the non -linearity of wave washer springs, the three dimensional plate analysis theory using the finite element method is adopted in this paper. The wave washer springs are considered to be three dimensional plate structures rather than frame structures, because their thickness is normally much smaller than their width. The displacements of nodal points due to small increment of force are calculated by the finite element method and the calculated nodal displacements are added to X - Y Z coordinates of nodal points. The new stiffness matrix of the system using the new coordinates of nodal points is adopted to calculate the another nodal displacements, that is, the step by step method is used in this paper. The relations between the increments of forces and displacements in each step are recorded and plotted in chart. The experimental results are compared with the calculated chart and it is shown that there are good coincidences between measured values and calculated ones.

  • PDF

Soil Properties in Relation to Elastic Wave (탄성파를 이용한 흙의 특성연구)

  • 조계춘;이인모
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.6
    • /
    • pp.83-101
    • /
    • 2002
  • Elastic waves provide an important information about the soil mass in the near-surface. Soil properties in relation to elastic wave parameters are clarified to facilitate the application of geophysical technique to soil characterization. As an example, experiments are performed to gain further insight into the behavior of unsaturated particulate materials using bender elements. The small strain stiffness is continuously measured on specimens subjected to drying, and changes in stiffness are related to changes in interparticle forces such as capillarity, bonding due to ion sharing, buttress effect due to fine migration, and cementation due to salt precipitation. The rate of menisci regeneration is studied after a perturbation as well. Finally, several phenomena associated with the evolution of capillary forces during drying are identified.

Time Domain Analysis of Nonlinear Wave-Making Problems by a Submerged Sphere Oscillating with Forward Speed (전진 동요하는 잠수구에 의한 비선형 조파문제의 시간영역 해석)

  • Ha, Y.R.;Bae, S.Y.
    • Journal of Power System Engineering
    • /
    • v.14 no.6
    • /
    • pp.75-82
    • /
    • 2010
  • In this study, the topics for free-surface wave simulation, nonlinear hydrodynamic force, and the critical resonance frequency of so-called ${\tau}=U{\omega}/g$=1/4 are discussed. A high-order spectral/boundary element method is newly adapted as an efficient numerical tool. This method is one of the most efficient numerical methods by which the nonlinear gravity waves can be simulated and hydrodynamic forces also can be calculated in time domain. In this method, the velocity potential is expressed as the sum of surface potential and body potential. Then, surface potential is solved by using the high-order spectral method and body potential is solved by using the high-order boundary element method. By the combination of these two methods, the wave-making problems by a submerged sphere oscillating with forward speed under the free-surface are solved in time domain.

Speed-up Design for Overhead-line Considering Contact Force Fluctuations by a Wave Reflection and a Doppler Effect (파동반사와 도플러 효과를 고려한 전차선의 속도향상 설계)

  • Cho Yong Hyeon;Lee Ki Won;Kwon Sam Young;Kim Do Won
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1353-1359
    • /
    • 2004
  • There are many massive components added on the railway overhead-line. These components cause larger fluctuations of contact forces, which are due to wave reflections and Doppler effects when a high-speed train passes those. In this paper, mathematical formula are derived for the relation between the added mass and contact force fluctuations. Using the derived formula, we calculate a added mass on the overhead-line which cause amplification factor to become 2.5. German design practice requires that amplification factor due to the wave reflection should be less than 2.5 to obtain good current collection performance. To show the validity of the formula, simulation results are compared with the calculation results. Simulation results showed that contact force fluctuations grow rapidly when an added mass is larger than the calculation result. Therefore, the simple form of formula can be used for estimating maximum added mass not to cause large fluctuations of contact forces in early design phase.

  • PDF