• Title/Summary/Keyword: Wave Velocity

Search Result 2,356, Processing Time 0.033 seconds

Relationship Between Stiffness And Shear Strength of Normally Consolidated Clays (정규압밀점토의 강성도와 전단강도의 상관관계)

  • Park, Chi-Won;Park, Dong-Sun;Mok, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.402-413
    • /
    • 2006
  • Strength evaluation of soft soils is a formidable task because of difficulties in sampling, specimen preparation and setting in triaxial cells. In undrained triaxial testing, sampling disturbance, verticality of specimen and bedding effect give a great influence on shear strength measurements. In the other hand, shear wave measurements of specimens are less influenced by these factors. In this research, the bender elements were attached top cap and base pedestal of triaxial cell and shear wave velocities were measured. To initiate a methodology to evaluate shear strength indirectly by measuring shear wave velocity, a relationship between shear strength and shear wave velocity was developed with kaolinite specimens consolidated in the laboratory. Undrained shear strength turns out to increase linearly with shear wave velocity. Stress-strain curves can also be predicted with a hyperbolic model and shear wave measurements.

  • PDF

Applicability of Coda Wave Interferometry Technique for Measurement of Acoustoelastic Effect of Concrete

  • Shin, Sung Woo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.6
    • /
    • pp.428-434
    • /
    • 2014
  • In this study, we examined the applicability of coda wave interferometry (CWI) technique, which was developed to characterize seismic waves, to detect and evaluate change in the velocity of ultrasonic waves in concrete due to acoustoelastic effect. Ultrasonic wave measurements and compressive loading tests were conducted on a concrete specimen. The measured wave signals were processed with CWI to detect and evaluate the relative velocity change with respect to the stress state of the specimen. A phase change due to the acoustoelastic effect of concrete was clearly detected in the late-arriving coda wave. This shows that the relative velocity change of ultrasonic waves in concrete due to the acoustoelastic effect can be evaluated successfully and precisely using CWI.

Stress Evaluation by Measuring Ultrasonic Velocity (초음파 음속측정에 의한 응력평가에 관한 연구)

  • Lee, Bum-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.138-144
    • /
    • 1999
  • Longitudinal wave and shear wave velocity changes of PMMA Polymer meterial under the the unidirection load were measured. The Third-order elastic modulus and acousto-elastic modulus of PMMA are obtained. The theoretical and experemental values of the velocity change of each wave by stress are compared each other and the validity of theoretical expression is examinated.

  • PDF

Representative Shear Wave Velocity of Geotechnical Layers by Synthesizing In-situ Seismic Test Data in Korea (현장 탄성파시험 자료 종합을 통한 국내 지반지층의 대표 전단파속도 제안)

  • Sun, Chang-Guk;Han, Jin-Tae;Cho, Wanjei
    • The Journal of Engineering Geology
    • /
    • v.22 no.3
    • /
    • pp.293-307
    • /
    • 2012
  • Shear wave velocity is commonly invoked in explaining geophysical phenomena and in solving geotechnical engineering problems. In particular, the importance of shear wave velocity in geotechnical earthquake engineering has been widely recognized for seismic design and seismic performance evaluation. In the present study, various insitu seismic tests were performed to evaluate geotechnical dynamic characteristics at 183 sites in Korea, and shear wave velocity profiles with depth were determined to be representative of the dynamic properties at the investigated sites. Subsurface soil and rock layers at the target sites were reclassified into five geotechnical layers: fill, alluvial soil, weathered soil, weathered rock, and bedrock, taking into account their general uses in geotechnical earthquake engineering practice. Average shear wave velocity profiles for the five geotechnical layers were obtained by synthesizing the shear wave velocity profiles from seismic tests in the field. Based on the profiles, a representative shear wave velocity value was determined for each layer, for use in engineering seismology and geotechnical earthquake engineering.

Wave Passage Effect on the Seismic Response of a Building considering Bedrock Shear Wave Velocity (기반암의 전단파속도를 고려한 지진파의 통과시차가 건물의 지진거동에 미치는 영향)

  • Kim, Yong-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.89-94
    • /
    • 2014
  • Spatial variations of a seismic wave are mainly wave passage and wave scattering. Wave passage effect is produced by changed characteristics of exciting seismic input motions applied to the bedrock. Modified input motions travel horizontally with time differences determined by apparent shear wave velocity of the bedrock. In this study, wave passage effect on the seismic response of a structure-soil system is investigated by modifying the finite element software of P3DASS (Pseudo 3-Dimensional Dynamic Analysis of a Structure-soil System) to apply inconsistent (time-delayed) seismic input motions along the soft soil-bedrock interface. Study results show that foundation size affected on the seismic response of a structure excited with inconsistent input motions in the lower period range below 0.5 seconds, and seismic responses of a structure were decreased considerably in the lower period range around 0.05 seconds due to the wave passage. Also, shear wave velocity of the bedrock affected on the seismic response of a structure in the lower period range below 0.3 seconds, with significant reduction of the seismic response for smaller shear wave velocity of the bedrock reaching approximately 20% for an apparent shear wave velocity of 1000m/s at a period of 0.05 seconds. Finally, it is concluded that wave passage effect reduces the seismic response of a structure in the lower period range when the bedrock under a soft soil is soft or the bedrock is located very deeply, and wave passage is beneficial for the seismic design of a short period structure like a nuclear container building or a stiff low-rise building.

The Group Velocity of Lamb Wave Generated by the one Source in Unidirectional Laminated Composite Plates (일방향 적층 복합재료 판에서 한 음원에서 발생된 램파의 군속도)

  • Lee Jeong-Ki;Rhee Sang-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.107-112
    • /
    • 2006
  • The elastic waves in a plate are dispersive waves due to the characteristics of Lamb waves. However, S0 symmetric mode is less dispersive in the frequency region below the first cut-off frequency. The wave Propagation velocities vary with the direction in anisotropic plates such as Carbon Fiber Reinforced Plastic (CFRP) Plates. The wave vector direction and energy flow vector direction are same in isotropic plates. However, the wave vector direction same as the phase velocity direction is not in accordance with the energy flow direction same as the group velocity direction in anisotropic plates. In this study. the dispersion curves or the phase velocity from anti-symmetric and symmetric Lamb wave dispersion equation are calculated for unidirectional laminated composite plate. Slowness surface is sketched using phase velocity under the first cut-off frequency. The direction and magnitude of group velocity are corrected with this slowness surface. The measured group velocities are in good agreement with the corrected group velocity curve except near the fiber direction zone which is called the cusp region.

Effect of Hysteresis on Interface Waves in Contact Surfaces

  • Kim, Noh-Yu;Yang, Seung-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.6
    • /
    • pp.578-586
    • /
    • 2010
  • This paper describes a theoretical model and acoustic analysis of hysteresis of contacting surfaces subject to compression pressure. Contacting surfaces known to be nonlinear and hysteretic is considered as a simple spring that has a complex stiffness connecting discontinuous displacements between two solid contact boundaries. Mathematical formulation for 1-D interfacial wave propagation between two contacting solids is developed using the complex spring model to derive the dispersion relation between the interface wave speed and the complex interfacial stiffness. Existence of the interface wave propagating along the hysteretic interface is studied in theory and discussed by investigating the solution to the dispersion equation. Unlike the linear interface without hysteresis, there can exist only one distinct mode of interface waves for the hysteretic interface, which is anti-symmetric motion. The anti-symmetric mode of interface wave propagates with the velocity faster than the Rayleigh surface wave but less than the shear wave depending on the interfacial stiffness. If the contacting surfaces are compressed so much that the linear interfacial stiffness is very high, the hysteretic stiffness does not affect the interface wave velocity. However, it has an effect on the speed of interface wave for a loosely contact surfaces with a relatively low linear stiffness. It is also found that the phase velocity of anti-symmetric wave mode converges to the shear wave velocity in despite of the linear stiffness value if the hysteretic stiffness approaches 0.5.

An Approximation Expression of Wave Velocity of Viscous Boundary for Infinitely tong Elevated Bridge (반무한 연속고가교에 대한 점성경계 설정속도의 간편식)

  • Lee, Sang-Hun;Endo, Takao;Lee, Weon-Cheol
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.140-143
    • /
    • 2007
  • A continuing elevated bridge is replaced with mass-spring system model, and a part of the bridge is cut out as an analytical area. A viscous boundary is installed at both ends, and dynamic analyses are carried out changing the wave velocity of the viscous boundary, The result is compared with a result of a very long model corresponding to the solution with infinite length. A wave velocity is chosen so that the good performance of a viscous boundary is exhibited. The parametric analyses are carried out changing the model of various structural properties, and an approximation expression is suggested to obtain the wave velocity easily for setting a viscous boundary.

  • PDF

Comparison of Correlation Equations between N value and Shear Wave Velocity (N값과 전단파 속도의 상관식 비교)

  • Kong, Jin-Young;Chae, Hwi-Young;Chun, Byung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.656-665
    • /
    • 2010
  • Shear modulus has been recognized as one of the important soil properties in dynamic analysis of ground and can be calculated from in situ measurement of shear wave velocity. Field seismic tests are the most accurate but expensive methods to investigate dynamic ground characteristics. Due to that reason, empirical equations for estimating the shear wave velocity are widely used rather than conducting in-situ tests. The most common equations are based on the N value obtained in conjuctions with a standard penetration test. In this paper, the field datas of standard penetration test and suspension PS logging measured in 126 sites of Korea were summarized and the correlation equations between N value and shear wave velocity are suggested.

  • PDF

ANALYSIS OF OCEAN WAVE BY AIRBORNE PI-SAR X-BAND IMAGES

  • Yang, Chan-Su;Ouchi, Kazuo
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.240-242
    • /
    • 2008
  • In the present article, we analyze airborne Pi-SAR (Polarimetric-Interferometric SAR) X-band images of ocean waves around the Miyake Island at approximately 180 km south from Tokyo, Japan. Two images of a same scene were produced at approximately 40 min. interval from two directions at right angles. One image shows dominant range travelling waves, but the other image shows a different wave pattern. This difference can be caused by the different image modulations of RCS and velocity bunching. We have estimated the dominant wavelength from the image of range waves, and from the wave phase velocity computed from the dispersion relation (though no wave height data were available), the image intensity is computed by using the velocity bunching model. The comparison of the result with the second image at right angle strongly suggests the evidence of velocity bunching.

  • PDF