• 제목/요약/키워드: Wave Propagation Characteristics

검색결과 614건 처리시간 0.028초

국내 인프라사운드 전파특성 연구 (Infrasound Wave Propagation Characteristics in Korea)

  • 제일영
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.63-69
    • /
    • 2000
  • Korea Institute of Geology Mining and Materials(KIGAM) cooperating with Southern Methodist University(SMU) has been operating seismo-acoustic array in Chul-Won area to discriminate man-made explosions from natural earthquakes since at the end of July 1999. In order to characterize propagation parameters of detected seismo-acoustic signal and to associate these signals as a blast event accompanying seismic and acoustic signals simultaneously it is necessary to understand infrasound wave propagation in the atmosphere. Two comparable Effective Sound Velocity Structures(ESVS) in atmosphere were constructed by using empirical model (MSISE90 and HWM93) and by aerological observation data of Korea Meteorological Administration (KMA) at O-San area. Infrasound propagation path computed by empirical model resulted in rare arival of refracted waves on ground less than 200km from source region. On the other hand Propagation paths by KMA more realistic data had various arrivals at near source region and well agreement with analyzed seismo-acoustic signals from Chul-Won data. And infrasound propagation in specific direction was very influenced by horizontal wind component in that direction. Linear travel time curve drawn up by 9 days data of the KMA in autumn season showed 335.6m/s apparent sound velocity in near source region. The propagation characteristics will be used to associate seismo-acoustic signals and to calculate propagation parameters of infrasound wave front.

  • PDF

시공간적 분석을 통한 차로간 충격량 전파모형 개발 (Development of Impulse Propagation Model between Lanes through Temporal-Spatial Analysis)

  • 김상구;류주현
    • 대한교통학회지
    • /
    • 제29권3호
    • /
    • pp.123-137
    • /
    • 2011
  • 지금까지 교통류의 전파현상은 밀도와 교통량의 변화에 따른 충격파 이론을 사용하여 설명되어져 왔으나 서로 다른 차로간 교통류 전파와 같은 이질적인 교통류를 해석하기위해 적용하기에는 한계가 있다. 따라서, 본 연구는 고속 도로의 항공사진자료를 분석함으로써 합류부 구간과 엇갈림 구간, 기본구간의 교통류 전파특성을 시공간적으로 분석하고 차로간 교통류 전파해석을 위한 충격량 전파모형을 개발하는 것을 목적으로 한다. 본 연구에서는 기존에 사용하던 충격파 속도라는 척도를 이용하여 교통류 전파특성을 분석하고자 하였으나 전파특성에 대한 분명한 특징을 찾기가 어려웠고, 이러한 이유로 충격량이라는 새로운 척도를 개발하여 개발된 척도로 교통류 상태를 해석하고 적용하여 각 분석구간의 충격량 특성을 분석할 수 있었다. 분석된 3개 구간은 충격량의 특성이 공통적으로 발생하여 교통류 전파시 의미있는 임계치를 도출하였고, 차로간의 상호관계를 설명할 수 있는 요인을 파악하고 분석구간과 차로에 따라 다중회귀분석을 수행하여 충격량을 결정하는 차로간 충격량 전파모형을 개발하였다.

수소 예혼합기의 정상 및 이상연소에 관한 수치해석 (A Numerical Study on Normal and Abnormal Combustion in Hydrogen Premixture)

  • 손채훈;정석호
    • 대한기계학회논문집
    • /
    • 제19권8호
    • /
    • pp.1989-1998
    • /
    • 1995
  • Characteristics of the flame propagation for normal and abnormal combustion in hydrogen premixture in a cylindrical constant-volume combustion chamber are studied numerically. A detailed hydrogen oxidation kinetic mechanism, mixture transport properties and a model describing spark ignition process are used. The calculated pressure-time history of the stable deflagration wave propagation agrees well with the experiment. The ignition of the premixture in the unburned gas, initiated by the hot spot, causes a transition from deflagration to detonation under some initial temperature and pressure. Under the initial conditions with high temperature and pressure, excessive ignition energy initiates a strong blast wave and a detonation wave that follows. The chemical reaction in the detonation wave is much more vigorous than that in the deflagration wave and the peak pressure in the detonation wave is much higher than the equilibrium value.

FDTD Analysis of Electromagnetic Wave Propagation in an Inhomogeneous Ionosphere under Arbitrary-Direction Geomagnetic Field

  • Kweon, Jun-Ho;Park, Min-Seok;Cho, Jeahoon;Jung, Kyung-Young
    • Journal of electromagnetic engineering and science
    • /
    • 제18권3호
    • /
    • pp.212-214
    • /
    • 2018
  • The finite-difference time-domain (FDTD) model was developed to analyze electromagnetic (EM) wave propagation in an inhomogeneous ionosphere. The EM analysis of ionosphere is complicated, owing to various propagation environments that are significantly influenced by plasma frequency, cyclotron frequency, and collision frequency. Based on the simple auxiliary differential equation (ADE) technique, we present an accurate FDTD algorithm suitable for the EM analysis of complex phenomena in the ionosphere under arbitrary-direction geomagnetic field. Numerical examples are used to validate our FDTD model in terms of the reflection coefficient of a single magnetized plasma slab. Based on the FDTD formulation developed here, we investigate EM wave propagation characteristics in the ionosphere using realistic ionospheric data for South Korea.

Eringen's nonlocal elasticity theory for wave propagation analysis of magneto-electro-elastic nanotubes

  • Ebrahimi, Farzad;Dehghan, M.;Seyfi, Ali
    • Advances in nano research
    • /
    • 제7권1호
    • /
    • pp.1-11
    • /
    • 2019
  • In this article, wave propagation characteristics in magneto-electro-elastic (MEE) nanotube considering shell model is studied in the framework nonlocal theory. To account for the small-scale effects, the Eringen's nonlocal elasticity theory of is applied. Nonlocal governing equations of MEE nanotube have been derived utilizing Hamilton's principle. The results of this investigation have been accredited by comparing them of previous studies. An analytical solution of governing equations is used to obtain phase velocities and wave frequencies. The influences of different parameters, such as different mode, nonlocal parameter, length parameter, geometry, magnetic field and electric field on wave propagation responses of MEE nanotube are expressed in detail.

Measurement-Based Propagation Channel Characteristics for Millimeter-Wave 5G Giga Communication Systems

  • Lee, Juyul;Liang, Jinyi;Kim, Myung-Don;Park, Jae-Joon;Park, Bonghyuk;Chung, Hyun Kyu
    • ETRI Journal
    • /
    • 제38권6호
    • /
    • pp.1031-1041
    • /
    • 2016
  • This paper presents millimeter-wave (mmWave) propagation characteristics and channel model parameters including path loss, delay, and angular properties based on 28 GHz and 38 GHz field measurement data. We conducted measurement campaigns in both outdoor and indoor at the best potential hotspots. In particular, the model parameters are compared to sub-6 GHz parameters, and system design issues are considered for mmWave 5G Giga communications. For path loss modeling, we derived parameters for both the close-in free space model and the alpha-beta-gamma model. For multipath models, we extracted delay and angular dispersion characteristics including clustering results.

On Long Wave Induced by a Sub-sea Landslide Using a 2D Numerical Wave Tank

  • 구원철
    • 한국해양공학회지
    • /
    • 제21권5호
    • /
    • pp.1-8
    • /
    • 2007
  • A long wave induced by a Gaussian-shape submarine landslide is simulated by a 2D fully nonlinear numerical wave tank (NWT). The NWT is based on the boundary element method and the mixed Eulerian/Lagrangian approach. Using the NWT, physical characteristics of land-slide tsunami, including wave generation, propagation, particle kinematics, hydrodynamic pressure, run-up and depression, are simulated for the early stage of long wave generation and propagation. Various sliding mass heights are applied to the developed model for a systematic sensitivity analysis. In particular, the fully nonlinear NWT results are compared with linear results (exact body-boundary conditions with linear free-surface conditions) to identify the nonlinear effects in the respective cases.

비원형 관출구로부터 방출되는 펄스파의 특성에 관한 연구 (Study on the Characteristics of Impulse Wave Discharged from the Tube Exit with Non-Circular Cross-Section)

  • 신현동;권용훈;이영기;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.550-555
    • /
    • 2003
  • When a shock wave arrives at an open end of tube, an impulse wave is discharged from the tube exit and complicated flow is formed near tube exit. The flow field is influenced by the cross-sectional geometry of tube exit, such as circular, square, rectangular, trapezoid and etc. In the current study, three-dimensional propagation characteristics of impulse wave discharged from the tube exit with non-circular cross section are numerically investigated using a CFD method. Total variation diminishing (TVD) scheme is used to solve the three-dimensional, unsteady, compressible Euler equations. Computations are performed for the Mach numbers of the incident shock wave $M_{s}$ below 1.5. The results obtained show that the peak pressure of the impulse wave and propagation directivity depends on the cross-sectional geometry of tube exit and the Mach number of incident shock wave.

  • PDF

전파 예측 모델에 의한 와이브로 무선망 위치 선정의 최적화 시뮬레이션 (Optimizing Simulation of Wireless Networks Location for WiBRO Based on Wave Prediction Model)

  • 노수성;이칠기
    • 한국전자파학회논문지
    • /
    • 제19권5호
    • /
    • pp.587-596
    • /
    • 2008
  • 도심지 무선 인터넷 서비스에서 전파 특성(wave propagation characteristics)을 정화하게 예측하여 서비스 영역을 결정하는데 있어서 최적의 기지국 선정, 셀 설계 등은 매우 중요한 과정이다. 서비스 지역의 지형 지물 및 인위적 구조물의 건물 재질 및 높이와 폭 등 각기 다른 특징으로 인하여 무선망 서비스의 송수신 거리에 큰 영향을 미치고 있으며, 이는 기본적으로 요구되어지는 무선 인터넷 품질을 정확하게 예측 및 분석하여 이용자에게 서비스를 제공하는데 큰 어려움을 갖게 한다. 본 논문에서는 이러한 문제점을 개선하기 위한 전파 예측 모델에 의한 기본 기지국 위치 선정 후 가장 서비스 영향을 미치는 기지국 위치 이동 및 안테나의 각도 등 무선망 최적화를 결정짓는 파라미터 값의 변화에 따라 서비스 영역이 최적화 되어 서비스 지역 덴 품질이 개선되는 과정을 시뮬레이션 함으로써 무선방 기지국 최적화 과정을 통하여 동일 지역 내 서비스 커버리지가 넓어지고 개선된 품질로서 이용자들이 질 높은 무선 인터넷 서비스를 제공받을 수 있게 된다는 것을 보여 주었다.

Wave propagation and vibration of FG pipes conveying hot fluid

  • Zhang, Yi-Wen;She, Gui-Lin
    • Steel and Composite Structures
    • /
    • 제42권3호
    • /
    • pp.397-405
    • /
    • 2022
  • The existing researches on the dynamics of the fluid-conveying pipes only focus on stability and vibration problems, and there is no literature report on the wave propagation of the fluid-conveying pipes. Therefore, the purpose of this paper is to explore the propagation characteristics of longitudinal and flexural waves in the fluid-conveying pipes. First, it is assumed that the material properties of the fluid-conveying pipes vary based on a power function of the thickness. In addition, it is assumed that the material properties of both the fluid and the pipes are closely depended on temperature. Using the Euler-Bernoulli beam equation and based on the linear theory, the motion equations considering the thermal-mechanical-fluid coupling is derived. Then, the exact expressions of phase velocity and group velocity of longitudinal waves and bending waves in the fluid-conveying pipes are obtained by using the eigenvalue method. In addition, we also studied the free vibration frequency characteristics of the fluid-conveying pipes. In the numerical analysis, we successively studied the influence of temperature, functional gradient index and liquid velocity on the wave propagation and vibration problems. It is found that the temperature and functional gradient exponent decrease the phase and group velocities, on the contrary, the liquid flow velocity increases the phase and group velocities. However, for vibration problems, temperature, functional gradient exponent parameter, and fluid velocity all reduce the natural frequency.