• Title/Summary/Keyword: Wave Propagation Characteristics

Search Result 618, Processing Time 0.025 seconds

EMW Propagation Characteristics in Waveguides Loaded with Gyromagnetic Materials (회전자성체내에서의 전자파 전파특성)

  • Hyung Joo Woo
    • 전기의세계
    • /
    • v.25 no.1
    • /
    • pp.101-103
    • /
    • 1976
  • Recently there exist many reports about the results of the theoretical analysis on the influence of screw symmetry structure to the characteristics of EMW propagation in the cylindrical wave-guides loaded with ferrite and, in this paper, an attempt is mode to analyze applying symmetry analysis the wave propagation characteristics in the dual turnstile structure. And one of the results obtained is the values of wave vectors become, in general, different according to the orientation of the geometry in the case of the dual turnstile structure.

  • PDF

A Study on the Pressure Wave Propagation of Viscous Fluid Flow in a Pipe Line (관로에서 점성유체 유동의 압력파 전달에 관한 연구)

  • Kim, H.O.;Na, G.D.;Mo, Y.W.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.835-840
    • /
    • 2000
  • The objective of the present study is to investigate the characteristics of pressure wave propagation of viscous fluid flow in a circular pipe line. The goal of this study is to select the best frequency of each control factor of a circular pipe. We intend to approach a formalized mathematical model by a very exact and reasonable polynomial for fluid transmission lines. and we computed this mathematical model by computer. The results show that the oil viscosity decreased as the length of the circular pipe increases. and The energy of pressure wave propagation decreased as the pipe diameter decreases. The factor is that density of oil was changed resonant frequency. It has been found the viscosity characteristics is changed largely by length of hydraulic pipe and volume of cavity tank.

  • PDF

The Characteristics of Pulsating Flow in a Hydraulic Pipe (유압관로에서 맥동유동 특성에 관한 연구)

  • 모양우;유영태;김지화
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.7
    • /
    • pp.653-665
    • /
    • 2001
  • The characteristics of the pulsating flow in a hydraulic pipe have been investigated. It is necessary to study the power control of the power transmission system in the landing gear system of aircraft and the design of robots. In this system, the power transmission pipeline is composed of a hydraulic system, and the operating flow is unsteady flow. The wave equation varying with frequency is analyzed in order to investigate the characteristics of unsteady flow in such a pipe. This wave equation involves the propagation coefficient in terns of frequency and viscosity. The theoretical result of this wave equation are compared with experimental result. Each wave equation, varying with the propagation coefficient, is analyzed theoretically. then, a sinusoidal wave generator is built in order to make better sinusoidal waves, and a rectifier is built to eliminate the noise from the hydraulic pump. The theoretical results of the wave equation in the flow of viscous fluid agree well with experimental results.

  • PDF

Wave Propagation Characteristics along a Simple Catenary with Arbitrary Impedance Condition (임의의 임피던스를 갖는 단순현가방식 가선계의 파동현상)

  • Park, Sukyung;Kim, Seamoon;Kim, Yang-Hann
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3463-3473
    • /
    • 1996
  • The characteristics of wave propagation along a catenary depend on various impedance conditions; i.e., spatial impedance of catenary, impedance of boundaries. In this study, wave propagation along a simple catenary system is studied with arbitrary impedance conditions such as impedance of pantograph, boundary, catenary etc. Seven coupled equations which determine the characteristics of wave propagation along catenary system have been derived and numerically solved. Results demonstrate the role of each impedance condition in the dynamics of catenary system, i.e. the way in which the conditions affect waves on catenary as well as contact force of pantograph. The formulation and suggested solution method can be certainly used for desinging an optimal catenary system for a given pantograph.

A Study on the Characteristics of Two Dimensional Stress Wave Propagation Using the Distinct Element Method (개별요소법에 의한 이차원 응력파의 전달특성에 관한 연구)

  • 오금호;김문겸;원용호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.406-413
    • /
    • 1998
  • The distinct element method is improved to consider the charateristics of stress wave propagation in media involving the discontinuous faces. The distinct element method has many advantages to analyse the characteristics of the reflection, refraction and deflection of the waves in nonhomogeneous media. The double-suing connection system is adopted instead of the single-spring connection system because the distinct element cannot be used for analysing the contact behavior between the different materials by only one contact spring. For the verification of the improved code, the results of the numerical analysis are compared with that of the photoelastic experiments which are one or two dimensional wave propagation problem of the nonhomogeneous media including the different accoustic impendence material or voids. It is shown that the characteristics of the stress wave propagation in nonhomogeneous media can be simulated appropriately using the improved distinct element method.

  • PDF

Wave propagation in laminated piezoelectric cylindrical shells in hydrothermal environment

  • Dong, K.;Wang, X.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.4
    • /
    • pp.395-410
    • /
    • 2006
  • This paper reports the result of an investigation into wave propagation in orthotropic laminated piezoelectric cylindrical shells in hydrothermal environment. A dynamic model of laminated piezoelectric cylindrical shell is derived based on Cooper-Naghdi shell theory considering the effects of transverse shear and rotary inertia. The wave characteristics curves are obtained by solving an eigenvalue problem. The effects of layer numbers, thickness of piezoelectric layers, thermal loads and humid loads on the wave characteristics curves are discussed through numerical results. The solving method presented in the paper is validated by the solution of a classical elastic shell non-containing the effects of transverse shear and rotary inertia. The new features of the wave propagation in laminated piezoelectric cylindrical shells with various laminated material, layer numbers and thickness in hydrothermal environment and some meaningful and interesting results in this paper are helpful for the application and the design of the ultrasonic inspection techniques and structural health monitoring.

Analysis of the Dispersion Relation of Elastic Waves Propagating on Vibrating Cylindrical Shells

  • Kil, Hyun-Gwon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.4E
    • /
    • pp.45-51
    • /
    • 2001
  • This paper examines the dispersion relation governing the wave propagation on cylindrical shells. The assumption of thin shells allows the dispersion relation to be separated into three relations related to the propagation of flexural waves and two types of membrane waves. Those relations are used to identify the characteristics of the wave number curves. The dispersion relation provides two and three closed wave number curves below and above the ring frequency. Above the ring frequency three wave number curves are clearly identified to be those of flexural, shear and longitudinal waves, respectively. Below the ring frequency, the characteristics of two wave number curves are identified with dependence of the direction of wave propagation.

  • PDF

Wave propagation in an FG circular plate in thermal environment

  • Gui-Lin, She;Yin-Ping, Li
    • Geomechanics and Engineering
    • /
    • v.31 no.6
    • /
    • pp.615-622
    • /
    • 2022
  • In this paper, considering the temperature dependence of material physical parameters as well as the effects of thermal effect and shear deformation, we have conducted an in-depth study on the wave propagation of functionally graded (FG) materials circular plate in thermal environment based on the physical neutral surface concept. The dynamic governing equations of functionally graded plates are established, and the dispersion relation of wave propagation is derived. The influence of different temperature fields on the propagation characteristics of flexural waves in FG circular plates is discussed in detail. It can be found that the phase velocity and group velocity of wave propagation in the plate decrease with the increase of temperature.

Dispersion-corrected Finite Element Method for the Stress Wave Propagation (응력파 전파 수치모의를 위한 유한요소법의 분산오차 저감에 관한 연구)

  • Hwang, In-Ho;Choi, Don-Hee;Hong, Sang-Hyun;Lee, Jong-Seh
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.39-44
    • /
    • 2008
  • Stress wave propagation plays an important role in many engineering problems for reducing industrial noise and vibrations. In this paper, the dispersion-corrected finite element model is proposed for reducing the dispersion error in simulation of stress wave propagation. At eliminating the numerical dispersion error arising from the numerical simulation of stress wave propagation, numerical dispersion characteristics of the wave equation based finite element model are analyzed and some dispersion control scheme are proposed. The validity of the dispersion correction techniques is demonstrated by comparing the numerical solutions obtained using the present techniques.

  • PDF

Hygro-thermal wave propagation in functionally graded double-layered nanotubes systems

  • She, Gui-Lin;Ren, Yi-Ru;Yuan, Fuh-Gwo
    • Steel and Composite Structures
    • /
    • v.31 no.6
    • /
    • pp.641-653
    • /
    • 2019
  • In this paper, wave propagation is studied and analyzed in double-layered nanotubes systems via the nonlocal strain gradient theory. To the author's knowledge, the present paper is the first to investigate the wave propagation characteristics of double-layered porous nanotubes systems. It is generally considered that the material properties of nanotubes are related to the porosity and hygro-thermal effects. The governing equations of the double-layered nanotubes systems are derived by using the Hamilton principle. The dispersion relations and displacement fields of wave propagation in the double nanotubes systems which experience three different types of motion are obtained and discussed. The results show that the phase velocities of the double nanotubes systems depend on porosity, humidity change, temperature change, material composition, non-local parameter, strain gradient parameter, interlayer spring, and wave number.