• 제목/요약/키워드: Wave Pressure

검색결과 2,090건 처리시간 0.023초

관 출구로부터 방출하는 약한 충격파의 평판충돌에 관한 연구 (The Impingement of a Weak Shock Wave Discharged from a Tube Exit upon a Flat Plate)

  • 이동훈;김희동;강성황
    • 소음진동
    • /
    • 제10권6호
    • /
    • pp.1035-1040
    • /
    • 2000
  • The Impingement of a weak shock wave discharged from the open end of a shock tube upon a flat plate was investigated using shock tube experiments and numerical simulations. Harten-Yee Total Variation Diminishing method was used to solve axisymmetric, unsteady, compressible flow governing equations. Computations predicted the experimented results with a good accuracy. The peak pressure on the flat plate was not strongly dependent of the shock wave Mach number in the present range of Mach Number from 1.05 to 1.20. The distance between the plate and shock tube was changed to investigate the effect on the peak pressure. From both the results of experiments and computations we obtained a good empirical equation to predict the peak pressure on the flat plate.

  • PDF

고속열차의 선두부 형상이 터널 입구압력파에 미치는 영향 (Effect of Train Nose Shape on the High-Speed railway Tunnel Entry Compression Wave)

  • 김희동;김태호;서태원
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 창립기념 춘계학술대회 논문집
    • /
    • pp.596-603
    • /
    • 1998
  • The entry compression wave, which is generated at the entrance of the tunnel, is almost always associated with the pressure transients in the tunnel as well as the impulse noise at the exit of the tunnel. It is highly required to design the train nose shape that can minimize such undesirable phenomena. The objective of the current work is to investigate the effects of the train nose shape on the entry compression wave. Numerical computations were applied to one-dimensional unsteady compressible flow in high-speed railway train/tunnel systems. A various shape of train noses were tested for a wide range of train speeds. The results showed that the strength of the entry compression wave is not influenced by the train nose shape, but the time variation of pressure in the entry compression wavefront is strongly related to the train nose shape. The current method of the characteristics was able to represent a desirable nose shape for various train speeds. Optimum nose shape was found to considerably reduce the maximum pressure gradient of the entry compression wave.

  • PDF

S/R 밸브에서 격막의 곡률반경과 재료가 밸브 개구시간에 미치는 영향 (The Effect of Curvature Radius and Material of Diaphragm on the Valve Opening Time in Diaphragm Type S/R Valve)

  • 전흥균;황재군;조태석;권영두;권순범
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2961-2966
    • /
    • 2007
  • When the pressure at the weak spot established at a certain part of a high pressure vessel or piping system exceeds a design pressure, this weak spot is burst, and the pressurized gas emitted through the weak spot will cause a compression wave system. In this connection, in the present study, an experimental study by using a conventional shock tube facility is performed to estimate the effects of the material of diaphragm, curvature radius and thickness of materials on the valve opening time in diaphragm. Pressure sensor having 500kHz in natural frequency is installed at 35mm downstream of the rupture diaphragm to measure the static pressure history of propagating and being accumulated compression wave. 4 kinds of materials are used as diaphragm that is aluminium, copper, stainless steel and zinc. The diaphragm radii of curvature R are ${\infty}$, 120mm and 60, respectively. And the depth for $90^{\circ}$ groove is 0.04mm. It is found that the smaller the tensile strength and elongation of the rupture diaphragm is, the smaller the radius of curvature of the rupture diaphragm is, and for the same conditions the thinner the thickness of the rupture diaphragm is, the shorter the valve opening time becomes. Also, the tensile strength, elongation and the radius of curvature of the rupture diaphragm for the same conditions are smaller, the maximum pressure rise caused by the coalescences of the compression wave is smaller. Finally the pressure ratio is higher, the valve opening time is shortened and gradient of pressure increment is more steepen.

  • PDF

고속전철의 터널입구 형상이 공력특성 및 터널입구 압축파에 미치는 영향 (Effect of Tunnel Entrance Shape of High Speed Train on Aerodynamic Characteristics and Entry Compression Wave)

  • 정수진;김우승
    • 한국자동차공학회논문집
    • /
    • 제12권6호
    • /
    • pp.111-118
    • /
    • 2004
  • The work presented in this paper concerns the aerodynamic characteristics and compression wave generated in a tunnel when a high speed train enters it. A large number of solutions have been proposed to reduce the amplitude of the pressure gradient in tunnels and some of the most efficient solutions consist of (a) addition ofa blind hood, (b) addition of inclined part at the entrance, and (c) holes in the ceiling of the tunnel. These are numerically studied by using the three-dimensional unsteady compressible Euler equation solver with ALE, CFD code, based on FEM method. Computational results showed that the smaller inclined angle leads to the lower pressure gradient of compression wave front. This study indicated that the most efficient slant angle is in the range from $30^{\circ}$ to $50^{\circ}$. The maximum pressure gradient is reduced by $26.81\%$ for the inclined angle of $30^{\circ}$ as compared to vertical entry. Results also showed that maximum pressure gradient can be reduced by $15.94\%$ in blind hood entry as compared to $30^{\circ}$ inclined tunnel entry. Furthermore, the present analysis showed that inclined slant angle has little effect on aerodynamic drag. Comparison of the pressure gradient between the inclined tunnel hood and the vertical entry with air vent holes indicated that the optimum inclined tunnel hood is much more effective way in reducing pressure gradient and increasing the pressure rise time.

간이물리모델을 이용한 원통형 압력용기의 내파해석 (Implosion Analysis of Circular Cylinder using Simplified Model)

  • 노인식;조상래;김용욱;한순흥;조윤식
    • 대한조선학회논문집
    • /
    • 제57권1호
    • /
    • pp.8-14
    • /
    • 2020
  • The implosion phenomena of pressure vessels operating in deep water under extremely high external pressure have been well known. The drastic energy release to ambient field in the form of pressure pulse is accompanied with catastrophic collapse of shell structure. Such a proximity shock wave could be a serious threat to the structural integrity of adjacent submerged body and several suspected accidents have been reported. In this study, basic research for the occurrence and development of shock wave due to implosion was carried out. The mechanism of pressure pulse generation and energy dissipation were investigated, and a simplified kinematic model to approximate the collapse modes of circular tubes which can be generated by external pressure and implosion was examined. Using the simplified kinematic model, the process of energy dissipation was formulated, and the magnitude of released pressure shock wave was estimated quantitatively. To investigate the validity of developed kinematic model and shock wave estimation process, the results from a nonlinear FE analysis code and collapse test carried out using pressure chamber were compared with the results from the developed kinematic model.

주파수의 변화에 따른 원형관로내 층류맥동유동의 속도와 압력의 분포 (Distributions of the velocity and pressure of the pulsatile laminar flow in a pipe with the various frequencies)

  • 배신철;모양우
    • 설비공학논문집
    • /
    • 제9권4호
    • /
    • pp.561-571
    • /
    • 1997
  • In this paper, the fundamental equations are developed for the pulsatile laminar flow generated by changing the oscillatory flow with $0{\leq}f{\leq}48Hz$ into a steady one with $0{\leq}Re{\leq}2500$ in a rigid circular pipe. Analytical solutions for the wave propagation factor k, the axial distributions of cross-sectional mean velocity $u_m$ and pressure p are schematically derived and confirmed experimentally. The axial distributions of centerline velocity and pressure were measured by using Pitot-static tubes and strain gauge type pressure transducers, respectively. The cross-sectional mean velocity was calculated from the centerline velocity by applying the parabolic distribution of the laminar flow and it was confirmed by using the ultrasonic flowmeter. It was found that the axial distributions of cross-sectional mean velocity and pressure agree well with theoretical ones and depend only on the Reynolds number Re and angular velocity $\omega$.

  • PDF

유압관로내 원통형 초크의 분류영역에서 맥동유동의 거동과 유동특성에 관한 연구 (Behavior and flow characteristics of pulsating flow in the jetflow region through cylindrical chokes)

  • 배신철;모양우
    • 대한기계학회논문집
    • /
    • 제19권11호
    • /
    • pp.3041-3053
    • /
    • 1995
  • Cylindrical chokes are used widely as components of hydraulic equipments. The dynamic characteristics between flowrate and pressure drop through the cylindrical chokes were discussed by the frequency characteristics of the chokes. It was assumed no pressure recovery occurred near the downstream of the choke. The pulsating jetflow from the outlet of cylindrical chokes show very complex behaviours which are quite different from the steady jet flow but it's not clarified quantitatively. In order to utilize the chokes as a flowmeter, it is indispensable to discuss the estimation of the dynamics of pressure drop in the downstream jetflow region of cylindrical chokes. In this experimental study, it is clarified that the reattachment length depended on pressure wave is compared with it depended on velocity wave. A pulsating flow is verified by visualization method. In the present study, the flow characteristic variables of laminar pulsating flow are investigated analytically and experimentally in a circular pipe. Characteristic parameters of the ratios of inertia(.PHI.$_{t,1}$) and viscous(.PHI.$_{z,1}$) term to pressure term are introduced to describe the flow pattern of laminar pulsating flow. flow.low.

초폭굉 모드 램 가속기에서 데토네이션파의 거동특성 (Behavior of Detonation Wave in Superdetonative Ram Accelerator)

  • 성근민;정인석;문귀원
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2005년도 제31회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.28-31
    • /
    • 2005
  • The numerical simulation is conducted for analysis flame structure of superdetonative ram accelerator experiment by ISL(French-German Research Institute in Saint Louis). Fully coupled chemically non-equilibrium Navier-Stokes equation is used. Shockwave structure of superdetonative ram accelerator and behavior of detonation wave is studied. Maintaining of detonation wave is very important to accelerate projectile, Because detonation wave make high pressure gases and this high pressure accelerate projectile.

  • PDF

맥파 전달 속도(PWV) 측정을 위한 특징점 검출 알고리즘 개발 (Development of Feature Points Detection Algorithm for Measuring of Pulse Wave Velocity)

  • 최정현;조욱현;박준호;김남훈;성향숙;조종만
    • 센서학회지
    • /
    • 제20권5호
    • /
    • pp.343-350
    • /
    • 2011
  • The compliance and stiffness of artery are closely related with disease of arteries. Pulse wave velocity(PWV) in the blood vessel is a basic and common parameter in the hemodynamics of blood pressure and blood flow wave traveling in arteries because the PWV is affected directly by the conditions of blood vessels. However, there is no standardized method to measure the PWV and it is difficult to measure. The conventional PWV measurement has being done by manual calculation of the pulse wave transmission time between coronary arterial proximal and distal points on a strip chart on which the pulse wave and ECG signal are recorded. In this study, a pressure sensor consisting of strain gauges is used to measure the blood pressure of arteries in invasive method and regular ECG electrodes are used to record the ECG signal. The R-peak point of ECG is extracted by using a reference level and time windowing technique and the ascending starting point of blood pressure is determined by using differentiation of the blood pressure signal and time windowing technique. The algorithm proposed in this study, which can measure PWV automatically, shows robust and good results in the extraction of feature points and calculation of PWV.

Systolic blood pressure measurement algorithm with mmWave radar sensor

  • Shi, JingYao;Lee, KangYoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권4호
    • /
    • pp.1209-1223
    • /
    • 2022
  • Blood pressure is one of the key physiological parameters for determining human health, and can prove whether human cardiovascular function is healthy or not. In general, what we call blood pressure refers to arterial blood pressure. Blood pressure fluctuates greatly and, due to the influence of various factors, even varies with each heartbeat. Therefore, achievement of continuous blood pressure measurement is particularly important for more accurate diagnosis. It is difficult to achieve long-term continuous blood pressure monitoring with traditional measurement methods due to the continuous wear of measuring instruments. On the other hand, radar technology is not easily affected by environmental factors and is capable of strong penetration. In this study, by using machine learning, tried to develop a linear blood pressure prediction model using data from a public database. The radar sensor evaluates the measured object, obtains the pulse waveform data, calculates the pulse transmission time, and obtains the blood pressure data through linear model regression analysis. Confirm its availability to facilitate follow-up research, such as integrating other sensors, collecting temperature, heartbeat, respiratory pulse and other data, and seeking medical treatment in time in case of abnormalities.