• Title/Summary/Keyword: Wave Height Meter

Search Result 18, Processing Time 0.025 seconds

Development of Wave Monitoring System using Precise Point Positioning (PPP 기반 항법 알고리즘을 이용한 파고 계측시스템 설계 및 구현)

  • Song, Se Phil;Cho, Deuk Jae;Park, Sul Gee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.5
    • /
    • pp.1055-1062
    • /
    • 2015
  • A GPS based wave height meter system is proposed in this paper. The proposed system uses a dual-frequency measurements, a precise GPS satellite information and a PPP-based navigation algorithm to estimate the position with high accuracy. This method does not need to receive corrections from the reference stations. Therefore, unlike RTK based wave meter, regardless of the distance to the reference stations, it is possible to estimate position with high accuracy. This system is very simple and accurate system, but accelerometer-based system requires the other sensors such as GPS. Because position error is accumulated in the accelerometer system and must be removed periodically for high accuracy. In order to get the measurements and test the proposed wave height meter system, a buoy equipped with the test platform is installed on the sea near by Jukbyeon habor in Uljin, Korea. Then, to evaluate the performance, compares built-in commercial wave height meter with proposed system.

Experiments on the Submarine Cable Protection Methods Considering the Connection Type (체결형상을 고려한 해저케이블 보호공법에 관한 실험)

  • Yoon, Jae Seon;Ha, Taemin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.329-329
    • /
    • 2017
  • In this study attempted to evaluate the stability of the protection methods by examining hydraulic characteristics of the area around the point in which marine cable protector is installed such as surf zone occurrence point of shore-end submarine cables suitable for coastal marine environmental conditions, flow rate t the tope of the protector and maximum wave height, and to provide basic data for the selection of the optimal protection method. In performing hydraulic model experiments, the topography of submarine cable installation location was reproduced in 2-D sectional channel, and models appropriate for experimental scale and similitude law were produced and installed for each condition of submarine cables and protectors. Since the topography and submarine cable protectors were reproduced and installed in 2-D sectional channel, the exact reproduction of surf and transformation in shallow water zone was possible, and thus the physical properties could be clearly analyzed. For stability review, an experiment to examine the stability was conducted using a wave maker with 50-year frequency design waves as target, and wave height and cycles were applied based on the approximate lowest low water level(Approx. L.L.W), which is the most dangerous in submarine cable protection methods. As for experimental time, typhoon passing time in summer (about 3 hours) was applied, and wave patterns and deviation ratio of the submarine cable protector were investigated after making irregular waves corresponding to design waves. In addition, current meter and wave height meter were installed at the installation location of the submarine cable protector, and the flow rates and wave height at the top of the protector were measured and analyzed to review hydraulic properties.

  • PDF

Experiments for the Characteristic Evaluation of Pollutant Transport in Tidal Influenced Region (조파역내 오염물 이동특성 평가 실험)

  • Park, Geon Hyeong;Kim, Ki Chul;Jung, Sung Hee;Suh, Kyung Suk
    • Journal of Radiation Industry
    • /
    • v.4 no.4
    • /
    • pp.391-395
    • /
    • 2010
  • The characteristics for pollutant transport in tidal influenced area was investigated using tidal wave hydraulic scale model. Hydraulic scale model was composed of the tidal generator, attenuation area and channel. Also, wave height, current meter and conductivity meter were used with the measured instruments in hydraulic scale model. NaCl with a tracer was used to evaluate the advection phenomena under the different velocity profiles. The arrival time of the maximum concentration in the condition of the relatively fast velocity was measured about 30 seconds faster than ones in the conditions of low velocity. The measured concentrations of the tracer were shown in the detection points of the flow direction consecutively.

Characteristics of Waves Continuously Observed over Six Years at Offshore Central East Coast of Korea (우리나라 동해안 중부 해역에서 6년간 연속 관측된 파랑의 특성)

  • Jeong, Weon-Mu;Oh, Sang-Ho;Cho, Hong-Yeon;Baek, Won-Dae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.2
    • /
    • pp.88-99
    • /
    • 2019
  • This study presents the results of analysis for the wave data that were consecutively collected from February 2013 to November 2018 at the location of 1.6 km offshore from Namhangjin beach. The water depth at the location is 30.5 m and waves were measured by AWAC (Acoustic Wave And Current meter). By using wave-by-wave analysis and spectral analysis, wave heights and periods were evaluated and then the relationships between the quantities obtained by the two methods were proposed based on linear regression analysis. In addition, monthly and yearly variations of the significant wave height and period, and the peak wave direction were analyzed. Moreover, the relationship between the significant wave height and period was newly suggested. Variability and probability distribution of the significant wave period with respect to the significant wave height were also examined.

Long-Period Wave Oscillations in Sokcho Harbor and Cheongcho Lagoon (1. Field Measurements and Data Analyses) (속초항과 청초호의 부진동 특성 (1. 현장관측과 자료 분석))

  • 정원무;박우선;김규한;채장원;김지희
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.1
    • /
    • pp.51-64
    • /
    • 2002
  • To investigate long-period wave responses in Sokcho Harbor and Cheongcho lagoon, field measurements were made for long-and short-period waves and current velocities using a Directional Waverider, a ultrasonic-type wave gauge, four pressure-type wave gauges, and a current meter. From the data analysis, it was found that the Helmholtz resonant periods of Sokcho Harbor and Cheongcho lagoon are about 13.6 and 54.5 minutes, respectively, and the dominant period of wave induced current in the passage between Sokcho Harbor and Cheongcho lagoon is about 55.2 minutes which depends on Helmholtz resonant condition of the Cheongcho lagoon. It was also found that the energy level of the far-infra-gravity waves during storm conditions is very high compared with that during calm sea conditions. To investigate relationships between far-infra-gravity waves and short-period waves at offshore station, regression analyses were carried out especially for 1) heights, 2) periods, 3) direction and height, 4) height and period between short-and far-infra-gravity waves, respectively. The results showed that the long-period wave height is highly correlated with the short-period wave height. However, no special trend was found for the other relations. In the future far-infra-gravity wave heights on return period around Sokcho Harbor region can be suggested by using extreme value analyses of long term measured data.

Relationship Analysis on the Monitoring Period and Parameter Estimation Error of the Coastal Wave Climate Data (연안 파랑 관측기간과 모수추정 오차 관계분석)

  • Cho, Hongyeon;Jeong, Weon-Mu;Jun, Ki Cheon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.1
    • /
    • pp.34-39
    • /
    • 2013
  • In this study, the quantitative analysis and pattern analysis of the error bounds with respect to recording period were carried out using the wave climate data from coastal areas. Arbitrary recording periods were randomly sampled from one month to six years using the bootstrap method. Based on the analysis, for recording periods less than one year, it was found that the error bounds decreased rapidly as the recording period increased. Meanwhile, the error bounds were found to decrease more slowly for recording periods longer than one year. Assuming the absolute estimate error to be around 10% (${\pm}0.1m$) for an one meter significant wave height condition, the minimum recording period for reaching the estimate error for Sokcho and Geoje-Hongdo stations satisfied this condition with over two years of data, while Anmado station was found to satisfy this condition when using observational data of over three years. The confidence intervals of the significant wave height clearly show an increasing pattern when the percentile value of the wave height increases. Whereas, the confidence intervals of the mean wave period are nearly constant, at around 0.5 seconds except for the tail regions, i.e., 2.5- and 97.5-percentile values. The error bounds for 97.5-percentile values of the wave height necessary for harbor tranquility analysis were found to be 0.75 m, 0.5 m, and 1.2 m in Sokcho, Geoje-Hongdo, and Anmado, respectively.

Efficiency of wave absorption by the porous of "Taewoo" of Jeju in regular seaway (파랑 중 제주 "테우" 틈에 의한 파 흡수효과)

  • Lee, Chang-Heon;Choi, Chan-Moon;Ahn, Jang-Young;Cho, Il-Hyoung
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.49 no.2
    • /
    • pp.144-152
    • /
    • 2013
  • In an effort to find the optimum porous of Taewoo through the mathematical model 2 - dimensional tank water experiment among the approached to a problem related to ocean engineering, this study analyzed the porosity by dividing it into 9 cases. As the wave penetrates through the longitudinal porous of the Taewoo model, it was found that there is a wave energy loss because of the phenomenon of the separation of the porous due to the eddy. Looking into the general tendency based on the wave-height meter (probe) data, it was found that the shorter wavelength and higher frequency area, the more reflection coefficients increased, but in contrast, the longer wavelength and lower frequency area, the transmission coefficients showed the increasing trend and energy dissipation was in a similar way with reflection coefficients. In addition, it was found that the bigger the porosity was, the narrower distribution range of reflection coefficients was, and the more its average value decreased. On the other hand the transmission coefficients in direct opposition to reflection was found to show the wider range and the more gradual increase in the average value as porosity was the bigger around the average value. In contrast, energy dissipation rate was found to increase linearly as porosity increased the more around the porosity of 0.2518 but it decreased gradually around the peak point. Through the above results, it is judged that the porous of optimum in the longitudinal direction of the Taewoo model perforated plate was about 2.6cm because it was found that the porosity which produced the lowest reflection and transmission coefficient and the highest energy dissipation. As a result of comparing this to the case where there was no porosity at all, it showed the function of wave absorbing about 31.60%.

3Meter Disc Buoy with Satellite Communications Infrastructure

  • Park, Soo-Hong;Keat, Kok Choon
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.3
    • /
    • pp.249-254
    • /
    • 2008
  • Moored ocean buoys are technically feasible approach for making sustained time series observation in the oceans and will be an important component of any long-term ocean observing system. The 3M disc buoy carried Zeno 3200, MCCB, Orbcomm, Global Star and Bluetooth module. The deployments have relied on Orbcomm and Global Star as the primary satellite communications system. In addition to detailing our practical experience in the use of Orbcomm and Global Star as high latitudes, we will present some of scientific sensor results regarding real-time oceanographic and meteorological parameters such as wind speed, wave height and etc. In this paper we present the design and implementation of a small-scale buoy sensor network. One of the major challenges is that the network is hard to access after its deployment and hence both hardware and software must be robust and reliable.

2007 Ambient noise levels study about new and moving seismic stations at KMA (2007년도 기상청 신설 및 이전 지진관측소의 배경잡음 특성 연구)

  • Jeon, Young-Soo;Nam, Sung-Tae;Sheen, Dong-Hoon;Cho, Beom-Jun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.163-166
    • /
    • 2007
  • KMA established short period seismometer, accelerometer, and ocean bottom seismometer network to build the detail earthquake monitoring system and Tsunami monitoring system. KMA also replaced borehole seismometer and wave height meter monitoring system. The purposes of this study are to record the ambient seismic noise levels of short period seismometer and accelerometer installed in 2006 and 2007, and compare their characteristics to present the standard of site selection criteria.

  • PDF

Changes of Current and Wave Patterns Depending on Typhoon Pathways in a Shallow Channel between Jeju and Udo Island (태풍 경로에 따른 제주 우도수로에서의 해류와 파랑 특성 변화)

  • Hong, Ji-Seok;Moon, Jae-Hong;Yoon, Seok-Hoon;Yoon, Woo Seok
    • Ocean and Polar Research
    • /
    • v.43 no.4
    • /
    • pp.205-217
    • /
    • 2021
  • A shallow channel between Jeju and Udo Islands, which is located in the northeastern Jeju Island, is influenced by storm- or typhoon-induced currents and surface waves as well as strong tidal currents. This study examines the typhoon-induced current and wave patterns in the channel, using Acoustic Doppler Current Meter (ADCP) measurements and an ocean-wave coupled modeling experiment. Three typhoons were chosen - Chaba (2016), Soulik (2018), and Lingling (2019) - to investigate the responses of currents and waves in their pathways. During the pre-typhoon periods, dominant northward flow and wave propagation were observed in the channel due to the southeasterly winds before the three typhoons. After the passage of Chaba, which passed over the eastern side of Jeju Island, the northward flow and wave propagation were totally reversed to the opposite direction, which was attributed to the strong northerly winds on the left side of the typhoon. In contrast, in the cases of Soulik and Lingling, which passed over the western side of Jeju Island, strong southerly winds on the right side of the typhoons continuously intensified the northward current and wave propagation in the channel. The model-simulated current and wave fields reasonably coincided with observational data, showing southward/northward flow and wave propagation in response to the right/left side of the typhoon pathways. Typhoon-induced downwind flows, and surface waves could enhance up to 2m/s and 3m due to the strong winds that lasted for more than 12 hours. This suggests that the flow and wave patterns in the Udo channel are highly sensitive to the pathway of typhoons and accompanying winds; thus, this may be a crucial factor with regard to the movement of seabed sediments and subsequent coastal erosion.