• Title/Summary/Keyword: Wave Height Buoy

Search Result 56, Processing Time 0.022 seconds

Assessment of Wave Change considering the Impact of Climate Change (기후변화 영향을 고려한 파랑 변화 평가)

  • Chang Kyum Kim;Ho Jin Lee;Sung Duk Kim;Byung Cheol Oh;Ji Eun Choi
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.19-31
    • /
    • 2023
  • According to the climate change scenarios, the intensity of typhoons, a major factor in Korea's natural disaster, is expected to increase. The increase in typhoon intensity leads to a rise in wave heights, which is likely to cause large-scale disasters in coastal regions with high populations and building density for dwelling, industry, and tourism. This study, therefore, analyzed observation data of the Donghae ocean data buoy and conducted a numerical model simulation for wave estimations for the typhoon MAYSAK (202009) period, which showed the maximum significant wave height. The boundary conditions for wave simulations were a JMA-MSM wind field and a wind field applying the typhoon central pressure reduction rate in the SSP5-8.5 climate change scenario. As a result of the wave simulations, the wave height in front of the breakwater at Sokcho port was increased by 15.27% from 4.06 m to 4.68 m in the SSP5-8.5 scenario. Furthermore, the return period at the location of 147-2 grid point of deep-sea design wave was calculated to increase at least twice, it is necessary to improve the deep-sea design wave of return period of 50-year, which is prescriptively applied when designing coastal structures.

A Study on the Relationship between Meteorological Condition and Wave Measurement using X-band Radar (X-밴드 레이더 파랑 계측과 기상 상태 연관성 고찰)

  • Youngjun, Yang
    • Journal of Navigation and Port Research
    • /
    • v.46 no.6
    • /
    • pp.517-524
    • /
    • 2022
  • This paper analyzes wave measurement using X-band navigation (ship) radar, changes in radar signal due to snowfall and precipitation, and factors that obstruct wave measurement. Data obtained from the radar installed at Sokcho Beach were used, and data from the Korea Meteorological Administration and the Korea Hydrographic and Oceanographic Agency were used for the meteorological data needed for comparative verification. Data from the Korea Meteorological Administration are measured at Sokcho Meteorological Observatory, which is about 7km away from the radar, and data from the Korea Hydrographic and Oceanographic Agency are measured at a buoy about 3km away from the radar. To this point, changes in radar signals due to rainfall or snowfall have been transmitted empirically, and there is no case of an analysis comparing the results to actual weather data. Therefore, in this paper, precipitation, snowfall data, CCTV, and radar signals from the Korea Meteorological Administration were comprehensively analyzed in time series. As a result, it was confirmed that the wave height measured by the radar according to snowfall and rainfall was reduced compared to the actual wave height, and a decrease in the radar signal strength according to the distance was also confirmed. This paper is meaningful in that it comprehensively analyzes the decrease in the signal strength of radar according to snowfall and rainfall.

Characteristics of the Differences between Significant Wave Height at Ieodo Ocean Research Station and Satellite Altimeter-measured Data over a Decade (2004~2016) (이어도 해양과학기지 관측 파고와 인공위성 관측 유의파고 차이의 특성 연구 (2004~2016))

  • WOO, HYE-JIN;PARK, KYUNG-AE;BYUN, DO-SEONG;LEE, JOOYOUNG;LEE, EUNIL
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.23 no.1
    • /
    • pp.1-19
    • /
    • 2018
  • In order to compare significant wave height (SWH) data from multi-satellites (GFO, Jason-1, Envisat, Jason-2, Cryosat-2, SARAL) and SWH measurements from Ieodo Ocean Research Station (IORS), we constructed a 12 year matchup database between satellite and IORS measurements from December 2004 to May 2016. The satellite SWH showed a root mean square error (RMSE) of about 0.34 m and a positive bias of 0.17 m with respect to the IORS wave height. The satellite data and IORS wave height data did not show any specific seasonal variations or interannual variability, which confirmed the consistency of satellite data. The effect of the wind field on the difference of the SWH data between satellite and IORS was investigated. As a result, a similar result was observed in which a positive biases of about 0.17 m occurred on all satellites. In order to understand the effects of topography and the influence of the construction structures of IORS on the SWH differences, we investigated the directional dependency of differences of wave height, however, no statistically significant characteristics of the differences were revealed. As a result of analyzing the characteristics of the error as a function of the distance between the satellite and the IORS, the biases are almost constant about 0.14 m regardless of the distance. By contrast, the amplitude of the SWH differences, the maximum value minus the minimum value at a given distance range, was found to increase linearly as the distance was increased. On the other hand, as a result of the accuracy evaluation of the satellite SWH from the Donghae marine meteorological buoy of Korea Meteorological Administration, the satellite SWH presented a relatively small RMSE of about 0.27 m and no specific characteristics of bias such as the validation results at IORS. In this paper, we propose a conversion formula to correct the significant wave data of IORS with the satellite SWH data. In addition, this study emphasizes that the reliability of data should be prioritized to be extensively utilized and presents specific methods and strategies in order to upgrade the IORS as an international world-wide marine observation site.

Variations of the Wind-generated Wave Characteristics around the Kyung-gi Bay, Korea (경기만 근해에서 풍파의 특성 변화)

  • Kang, Ki-Ryong;Hyun, Yu-Kyung;Lee, Sang-Ryong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.4
    • /
    • pp.251-261
    • /
    • 2007
  • The wind-wave interaction around the Kyung-gi Bay, Korea, was studied using the observed data from ocean buoy at DeuckJeuck-Do from Jan. to Dec., 2005, and from waverider data at KeuckYeulBee-Do on Mar. 19-26 and May 23-28, 2005. Wind-driven surface waves and wave-driven wind speed decrease were estimated from the ocean buoy data, and the characteristics of wave spectrum response were also investigated from the waverider data for the wave developing and calm stages of sea surface, including the time series of spectrum pattern change, frequency trend of the maximum energy level and spectrum slope for the equilibrium state range. The wind speed difference between before and after considering the wave effect was about $2ms^{-1}$ (wind stress ${\sim}0.1Nm^{-2}$) for the wind speed range $5-10ms^{-1}$ and about $3ms^{-1}$ (wind stress ${\sim}0.4Nm^{-2}$) for the wind speed range $10-15ms^{-1}$. Correlation coefficient between wind and wave height was increased from 0.71 to 0.75 after the wave effect considered on the observed wind speed. When surface waves were generated by wind, the initial waves were short waves about 4-5 sec in period and become in gradual longer period waves about 9-10 sec. For the developed wave, the frequency of maximum energy was showed a constant value taking 6-7 hours to reach at the state. The spectrum slope for the equilibrium state range varied with an amplitude in the initial stage of wave developing, however it finally became a constant value 4.11. Linear correlation between the frictional velocity and wave spectrum for each frequency showed a trend of higher correlation coefficient at the frequency of the maximum energy level. In average, the correlation coefficients were 0.80 and 0.82 for the frequencies 0.30 Hz and 0.35 Hz, respectively.

Development of the Global Tsunami Prediction System using the Finite Fault Model and the Cyclic Boundary Condition (유한 단층 모델 및 순환 경계조건을 이용한 전지구 지진해일 예측 시스템 개발)

  • Lee, Jun-Whan;Park, Eun Hee;Park, Sun-Cheon;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.6
    • /
    • pp.391-405
    • /
    • 2015
  • A global tsunami prediction system was suggested for a distant tsunami using a finite fault model and a cyclic boundary condition. The possibility of the suggested system as a distant tsunami response system was checked by applying it into the case of 2014 Chile tsunami. A comparison between the numerical results(tsunami height and arrival time) with different conditions (boundary condition, governing equation, grid size and fault model) and measured data (DART buoy, tide station) showed the importance of the finite fault model and the cyclic boundary condition.

A Study on Ocean Meteorological Observation Wave Meter System based on Kalman-Filter (칼만 필터 기반의 스마트 해양기상관측 파고 시스템 연구)

  • Park, Sanghyun;Park, Yongpal;Kim, Heejin;Kim, Jinsul;Park, Jongsu
    • Journal of Digital Contents Society
    • /
    • v.18 no.7
    • /
    • pp.1377-1386
    • /
    • 2017
  • We propose a smart ocean meteorological observation system which is capable of real-time measurement of vulnerable marine climate and oceanographic conditions. Besides, imported products have several disadvantages such that they can't be measured for a long time and can't transmit data in real time. In the proposed system, smart ocean observation digging system, it observes real-time ocean weather with data logger methods. Furthermore, we also use existing dataloggers functions with various sensors which are available in the ocean at the same time. Also, we applied the Kalman-filter algorithm to the ocean crest measurement to reduce the noise and increase the accuracy of the real-time wave height measurement. In the experiment, we experimented the proposed system with our proposed algorithms through calibration devices in the real ocean environment. Then we compared the proposed system with and without the algorithms. As a result, the system developed with a lithium iron phosphate battery that can be charged by a system used in the ocean and minimized power consumption by using an RTC based timer for optimal use. Besides, we obtained optimal battery usage and measured values through experiments based on the measurement cycle.