DOI QR코드

DOI QR Code

Variations of the Wind-generated Wave Characteristics around the Kyung-gi Bay, Korea

경기만 근해에서 풍파의 특성 변화

  • Published : 2007.11.30

Abstract

The wind-wave interaction around the Kyung-gi Bay, Korea, was studied using the observed data from ocean buoy at DeuckJeuck-Do from Jan. to Dec., 2005, and from waverider data at KeuckYeulBee-Do on Mar. 19-26 and May 23-28, 2005. Wind-driven surface waves and wave-driven wind speed decrease were estimated from the ocean buoy data, and the characteristics of wave spectrum response were also investigated from the waverider data for the wave developing and calm stages of sea surface, including the time series of spectrum pattern change, frequency trend of the maximum energy level and spectrum slope for the equilibrium state range. The wind speed difference between before and after considering the wave effect was about $2ms^{-1}$ (wind stress ${\sim}0.1Nm^{-2}$) for the wind speed range $5-10ms^{-1}$ and about $3ms^{-1}$ (wind stress ${\sim}0.4Nm^{-2}$) for the wind speed range $10-15ms^{-1}$. Correlation coefficient between wind and wave height was increased from 0.71 to 0.75 after the wave effect considered on the observed wind speed. When surface waves were generated by wind, the initial waves were short waves about 4-5 sec in period and become in gradual longer period waves about 9-10 sec. For the developed wave, the frequency of maximum energy was showed a constant value taking 6-7 hours to reach at the state. The spectrum slope for the equilibrium state range varied with an amplitude in the initial stage of wave developing, however it finally became a constant value 4.11. Linear correlation between the frictional velocity and wave spectrum for each frequency showed a trend of higher correlation coefficient at the frequency of the maximum energy level. In average, the correlation coefficients were 0.80 and 0.82 for the frequencies 0.30 Hz and 0.35 Hz, respectively.

본 연구에서는 경기만 근해 - 격렬비도와 덕적도 해역을 중심으로 - 에서 관측된 파랑 및 바람자료를 이용하여 바람과 파랑의 상호작용을 연구하였다. 2005년 1월에서 12월의 덕적도 부이 관측자료를 바탕으로 바람에 의한 파랑의 발생과 또 발생된 파랑에 의한 바람의 감쇄효과를 계산하였으며, 2005년 3월 19-26일과 5월 23-28일에 격렬비도 근해에서 관측된 자료를 이용하여 파랑이 발달할 때와 잔잔한 상태가 유지 될 때를 나누어 파랑 스펙트럼의 반응형태를 알아보았다. 또한, 시간에 따른 스펙트럼의 형태, 최대 에너지 주파수, 평형 영역의 기울기 등도 분석하였다. 관측풍속 $5-10ms^{-1}$의 범위에서 파랑에 의한 풍속의 감소는 최대 $2ms^{-1}$(응력${\sim}0.1Nm^{-2}$)를 보였고, $10-15ms^{-1}$일 때는 $3ms^{-1}$(응력${\sim}0.4Nm^{-2}$)의 차이를 보였다. 풍속과 파고의 상관분석에서도 관측풍속과 파고의 영향을 고려한 풍속(참풍속)의 경우 선형적인 상관도가 0.71에서 0.75로 약 0.04 정도 상승하였다. 잔잔한 상태에서 파랑이 발생할때 초기에는 4-5초의 단주기 파랑이 형성되고 발달과정을 거치면서 9-10초 주기의 장주기로 이동하며, 최대 에너지 주파주는 일정한 값을 유지하게 된다. 이 상태에 도달하는데 소요되는 시간은 약 6-7시간 정도였다. 또한 스펙트럼의 평형 영역 기울기는 파랑발생 초기에는 변화폭이 존재하나 풍파가 발달하면서 약 4.11의 값으로 접근하였다. 파랑 스펙트럼의 주파수대별 시간 변동과 마찰 속도와의 상관성에 있어 파랑 스펙트럼의 최대 에너지 주파수대 부근에서 높은 상관성을 보이는 경향을 보였으며 0.3 Hz와 0.35 Hz 에서 평균 0.80과 0.82 상관도를 보였다.

Keywords

References

  1. 오병철, 이길성, 1999. 풍파 스펙트럼의 시간 발전에 관한 수치 실험. 한국해안해양공학회, 11(1): 20-33
  2. 윤종태, 1996. 풍향변화에 따른 파랑 스펙트럼 반응에서의 비선형 효과. 한국해안해양공학회, 8(2): 151-160
  3. Allender, J.H., J. Albrecht and G. Hamilton, 1983. Observations of directional relaxation of wind sea spectra. J. Phys. Oceanogr., 13: 1519-1525 https://doi.org/10.1175/1520-0485(1983)013<1519:OODROW>2.0.CO;2
  4. Danard, M., 1980. A note on estimating the height of the constant layer. Bound.-Layer Meteor., 56: 83-99 https://doi.org/10.1007/BF00119963
  5. Deardorff, J.W., 1968. Dependence of air-sea transfer coefficients on bulk stability. J. Geophys. Res., 73: 2549-2557 https://doi.org/10.1029/JB073i008p02549
  6. Dittmer, K., 1977. The hydrodynamic roughness of the sea surface at low wind speeds. Meteor., 12: 10-15
  7. Gunther, H., W. Rosenthal and M. Dunckel, 1981. The response of surface gravity waves to changing wind direction. J. Phys. Oceanogr., 11: 718-728 https://doi.org/10.1175/1520-0485(1981)011<0718:TROSGW>2.0.CO;2
  8. Hasselmann, D.E., M. Dunckel, and J.A. Ewing, 1980. Directional wave spectra observed during JONSWAP 1973, J. Phys. Oceanogr., 10: 1264-1280 https://doi.org/10.1175/1520-0485(1980)010<1264:DWSODJ>2.0.CO;2
  9. Hasselmann, K., T.P. Barnett, E. Bouws, H. Carlson, D.E. Cartwright, K. Enke, J.A. Ewing, H. Gienapp, D.E. Hasselmann, P. Kruseman, A. Meerburg, P. Muller, D.J. Olbers, K. Richter, W. Sell and H. Walden, 1973. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Erganz. Dtsch. Hydrogr. Z., Suppl. A., 8(12): 95pp
  10. Komen, G.J., S. Hasselmann and K. Hasselmann, 1984. On the existence of a fully developed wind-sea spectrum. J. Phys. Oceanogr., 14: 1271-1285 https://doi.org/10.1175/1520-0485(1984)014<1271:OTEOAF>2.0.CO;2
  11. Krugermeyer, L., M. Gruenewald, and M. Dunckel, 1978. The influence of sea waves on the wind profile. Bound.-Layer Meteor., 14: 403-414 https://doi.org/10.1007/BF00121049
  12. Large, W.G., 1979. The turbulent fluxes of momentum and sensible heat over the open sea during moderate to strong winds. Ph.D. Thesis, University of British Columbia, 180 pp
  13. Large, W.G. and S. Pond, 1981. Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11: 324-336 https://doi.org/10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2
  14. Large, W.G. and J. Morzel and G.B. Crawford, 1995. Accounting for surface wave distortion of the marine wind profile in low-level ocean storm wind measurements. J. Phys. Oceanogr., 25: 2959-2971 https://doi.org/10.1175/1520-0485(1995)025<2959:AFSWDO>2.0.CO;2
  15. Lurnley, J.A., and H.A. Panofsky, 1964. The structure of Atmospheric Turbulence. Wiley and Sons, 239 pp
  16. Mitsuyasu, H., 1968. On the growth of the spectrum of wind-generated wave (I). Rep. Res. Inst. Appl. Mech., Kyushu Univ., 16: 459-482
  17. Mitsuyasu, H., 1969. On the growth of the spectrum of wind-generated wave (II). Rep. Res. Inst. Appl. Mech., Kyushu Univ., 17: 235-248
  18. Mitsuyasu, H., 1973. One dimensional wave spectra at limited fetch. Rep. Res. Inst. Appl. Mech., Kyushu Univ., 20: 37-53
  19. Mitsuyasu, H., F. Tasai, T. Shuhara, S. Mizuno M. Ohkuso, T. Honda and K. Rikiishi, 1975. Observations of the directional spectrum of ocean waves using a cloverleaf buoy. J. Phys. Oceanogr., 5: 750-760 https://doi.org/10.1175/1520-0485(1975)005<0750:OOTDSO>2.0.CO;2
  20. Pierson, W.J., Jr. 1952. A unified mathematical theory for the analysis, propagation and refraction of storm-generated ocean surface waves, Part I and II. N.Y.U., Coll. of Eng., Res. Div., Dept. of Meteorol. an Oceanogr. Prepared for the Beach Erosion Board, Dept. of the Army, and Office of Naval Res., Dept. of the Navy, 461pp
  21. Phillips, O.M., 1958. The equilibrium range in the spectrum of windgenerated waves. J. Fluid Mech., 4: 426-434 https://doi.org/10.1017/S0022112058000550
  22. Pierson, W.J. and L. Moskowitz, 1964. A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii. J. Geophys. Res., 69: 5181-5190 https://doi.org/10.1029/JZ069i024p05181
  23. Shen, Z. and L. Mei, 1993. Equilibrium spectra of water waves forced by intermittent wind turbulence. J. Phys. Oceanogr., 23: 2019-2026 https://doi.org/10.1175/1520-0485(1993)023<2019:ESOWWF>2.0.CO;2
  24. Severdrup, H.U. and W.H. Munk, 1947. Wind sea and swell: Theory of relations for forecasting. U. S. Hydrogr. Office, Wash., Publ. 601: 1-44
  25. Tennekes, H., 1973. The logarithmic wind profile. J. Atmos. Sci., 30: 234-238 https://doi.org/10.1175/1520-0469(1973)030<0234:TLWP>2.0.CO;2
  26. Toba, Y., 1973. Local balance in the air-sea boundary process III. J. Oceanogr. Soc. Japan, 29: 209-220 https://doi.org/10.1007/BF02108528
  27. Toba, Y., K. Okada, I.S.F. Jones, 1988. The response of wind-wave spectra to changing winds. Part I: Increasing Winds. J. Oceanogr. Soc. Japan, 18: 1231-1240
  28. Young, I.R., S. Hasselmann and K. Hasselmann, 1987. Computations of wave spectrum to a sudden change in wind direction. J. Phys. Oceanogr., 17: 1317-1338 https://doi.org/10.1175/1520-0485(1987)017<1317:COTROA>2.0.CO;2