• 제목/요약/키워드: Wave Effect

검색결과 3,449건 처리시간 0.033초

Effect of Hysteresis on Interface Waves in Contact Surfaces

  • Kim, Noh-Yu;Yang, Seung-Yong
    • 비파괴검사학회지
    • /
    • 제30권6호
    • /
    • pp.578-586
    • /
    • 2010
  • This paper describes a theoretical model and acoustic analysis of hysteresis of contacting surfaces subject to compression pressure. Contacting surfaces known to be nonlinear and hysteretic is considered as a simple spring that has a complex stiffness connecting discontinuous displacements between two solid contact boundaries. Mathematical formulation for 1-D interfacial wave propagation between two contacting solids is developed using the complex spring model to derive the dispersion relation between the interface wave speed and the complex interfacial stiffness. Existence of the interface wave propagating along the hysteretic interface is studied in theory and discussed by investigating the solution to the dispersion equation. Unlike the linear interface without hysteresis, there can exist only one distinct mode of interface waves for the hysteretic interface, which is anti-symmetric motion. The anti-symmetric mode of interface wave propagates with the velocity faster than the Rayleigh surface wave but less than the shear wave depending on the interfacial stiffness. If the contacting surfaces are compressed so much that the linear interfacial stiffness is very high, the hysteretic stiffness does not affect the interface wave velocity. However, it has an effect on the speed of interface wave for a loosely contact surfaces with a relatively low linear stiffness. It is also found that the phase velocity of anti-symmetric wave mode converges to the shear wave velocity in despite of the linear stiffness value if the hysteretic stiffness approaches 0.5.

A study on surface wave dispersion due to the effect of soft layer in layered media

  • Roy, Narayan;Jakka, Ravi S.;Wason, H.R.
    • Geomechanics and Engineering
    • /
    • 제13권5호
    • /
    • pp.775-791
    • /
    • 2017
  • Surface wave techniques are widely used as non-invasive method for geotechnical site characterization. Field surface wave data are collected and analyzed using different processing techniques to generate the dispersion curves, which are further used to extract the shear wave velocity profile by inverse problem solution. Characteristics of a dispersion curve depend on the subsurface layering information of a vertically heterogeneous medium. Sometimes soft layer can be found between two stiff layers in the vertically heterogeneous media, and it can affect the wave propagation dramatically. Now most of the surface wave techniques use the fundamental mode Rayleigh wave propagation during the inversion, but this may not be the actual scenario when a soft layer is present in a vertically layered medium. This paper presents a detailed and comprehensive study using finite element method to examine the effect of soft layers which sometimes get trapped between two high velocity layers. Determination of the presence of a soft layer is quite important for proper mechanical characterization of a soil deposit. Present analysis shows that the thickness and position of the trapped soft layer highly influence the dispersion of Rayleigh waves while the higher modes also contribute in the resulting wave propagation.

Tethers tension force effect in the response of a squared tension leg platform subjected to ocean waves

  • El-gamal, Amr R.;Essa, Ashraf;Ismail, Ayman
    • Ocean Systems Engineering
    • /
    • 제4권4호
    • /
    • pp.327-342
    • /
    • 2014
  • The tension leg platform (TLP) is one of the compliant structures which are generally used for deep water oil exploration. With respect to the horizontal degrees of freedom, it behaves like a floating structure moored by vertical tethers which are pretension due to the excess buoyancy of the platform, whereas with respect to the vertical degrees of freedom, it is stiff and resembles a fixed structure and is not allowed to float freely. In the current study, a numerical study for square TLP using modified Morison equation was carried out in the time domain with water particle kinematics using Airy's linear wave theory to investigate the effect of changing the tether tension force on the stiffness matrix of TLP's, the dynamic behavior of TLP's; and on the fatigue stresses in the cables. The effect was investigated for different parameters of the hydrodynamic forces such as wave periods, and wave heights. The numerical study takes into consideration the effect of coupling between various degrees of freedom. The stiffness of the TLP was derived from a combination of hydrostatic restoring forces and restoring forces due to cables. Nonlinear equation was solved using Newmark's beta integration method. Only uni-directional waves in the surge direction was considered in the analysis. It was found that for short wave periods (i.e., 10 sec.), the surge response consisted of small amplitude oscillations about a displaced position that is significantly dependent on tether tension force, wave height; whereas for longer wave periods, the surge response showed high amplitude oscillations that is significantly dependent on wave height, and that special attention should be given to tethers fatigue because of their high tensile static and dynamic stress.

사석식 경사방파제에 작용하는 파압이 제체 안정성에 미치는 영향 (The Effect of Wave Pressure on Stability Rubble Mound Breakwater)

  • 정규향;이용대;이병문;정삼기;김근섭
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.579-584
    • /
    • 2009
  • Arrangement of the facilities for improving harbor functions depends on sea and land conditions such as the ship's arrival and departure conditions, waves and tide. And the plan and the size of the facilities depend much on harbor and marine environment condition such as cargo quantity, ship size, ship traffic and seawater circulation. Among these, waves have so much effect on a breakwater design that it is the most important to understand their characteristics and to apply them to breakwater design. Therefore, to analyze the effect of waves characteristics over a rubble mound breakwater, we have calculated wave pressure by using numerical analysis at each tide level and have analyzed the effect of wave pressure on structure stability by conducting the stability analysis with the wave pressure. As a result, it is found that during low and mean tide level time the biggest wave pressure is estimated near calm water level. But during high tide time, the biggest wave pressure is estimated in front of capping. And the stability analysis indicates also that a structure is most unstable when low tide time wave pressure is acting on. After reviewing the stability of a structure by applying vertical and horizon wave forces, it is concluded that safety factor is lower than ordinary time(max. about 15%), is also reviewed when designing a rubble mound breakwater.

  • PDF

파랑자료의 sampling rate가 극한파의 통계에 미치는 영향 (The Effect of Sampling Rate on Statistical Properties of Extreme Wave)

  • 김도영
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제16권1호
    • /
    • pp.36-41
    • /
    • 2013
  • 이 논문에서는 시계열의 파랑자료를 시뮬레이션 하여 파랑계측에서 sampling rate가 파랑자료의 각종 통계적 특성에 미치는 영향을 살펴보았다. 파랑자료의 Sampling rate가 freak wave와 같은 극한파의 통계특성에 미치는 영향을 파악하기 위하여, 이상(AI)지수, 파형의 첨도(kurtosis) 그리고 최대파고 등의 변화를 살펴보았다. Sampling rate가 커지면 각종 파고의 크기가 줄어드는 경향을 보인다. Sampling rate가 커지면 파랑스펙트럼의 0차 모멘트는 큰 변화가 없지만 2차 모멘트는 큰 영향을 받아서, Tz는 과대평가되고 대역폭은 과소평가된다. 따라서 sampling rate변화에 따른 유의파고 크기의 오차는 스펙트럼법에 의한 유의파고 $H_s$가 개별파법에 의한 유의파고 $H_{1/3}$ 보다 작게 나타난다. Sampling rate에 의해서 발생한 오차의 크기는 파랑의 주기가 커지면 줄어드는 경향을 보인다. 파형의 첨도와 AI지수는 sampling rate가 1 Hz 이상인 경우는 큰 오차를 주지 않는다. 일반적으로 freak wave와 같은 극한파가 포함된 파랑을 계측할 때, 1 Hz의 이상의 samping rate로 계측한 해양파의 자료를 사용한다면 sampling rate가 최대파고의 크기의 미치는 오차가 5% 이하가 될 것으로 예상된다.

시각활동에 미치는 전자파의 영향 (An effect of electromagnetic wave on visual activity)

  • 김기영;이승주;윤재현;이현철;박춘배;박형준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 D
    • /
    • pp.2724-2726
    • /
    • 2002
  • The effect which electromagnetic wave has influence on visual activity of human, was investigated in this study. The EEG and the EOG generated by the rays of LED were measured in shield room when the subject were exposed at electromagnetic wave(820MHz, 2mV) or not exposed. Each component of the EEG was compared and evaluated on being exposed at electromagnetic wave or not. As a result was $\alpha$ wave was represented relatively low level in the case of exposed at electromagnetic wave and $\beta$ wave was represented relatively low level in the case of not exposed.

  • PDF

Boussinesq 모델을 이용한 제주 차귀도 해역의 다방향 불규칙파 시뮬레이션 (A Simulation of Directional Irregular Waves at Chagui-Do Sea Area in Jeju Using the Boussinesq Wave Model)

  • 류황진;신승호;홍기용;홍석원;김도영
    • 한국해양공학회지
    • /
    • 제21권1호
    • /
    • pp.7-17
    • /
    • 2007
  • Based on the Boussinesq wave model, the wave distribution in the Chagui-Do sea area in Jeju was simulated by applying the directional irregular waves at an incident boundary. The time and spatial variations of monthly mean wave height and period were investigated, which aims to provide basic information on optimal sites for wave power generation. The grid size and time interval of the Boussinesq wave model were validated by examining wave distributions around a surface piercing wall, fixed at sea bottom with a constant slope. Except for the summer season, the significant wave height is dominated by wind waves and appears to be relatively high at the north sea of Chagui-Do, which is open to the ocean, while it is remarkably reduced at the rear sea of Chagui-Do because of its blocking effect on incident waves. In the summer, the significant wave height is higher at the south sea, and it is dominated by the swell waves, which is contributed by the strong south-west wind. The magnitude of significant wave height is the largest in the winter and the lowest in the spring. Annual average of the significant wave height is distinctively high at the west sea close to the Chagui-Do coast, due to a steep variation of water depth and corresponding wave focusing effect. The seasonal and spatial distribution of the wave period around Chagui-Do sea reveals very similar characteristics to the significant wave height. It is suggested that the west sea close to the Chagui-Do coast is the mast promising site for wave power generation.

일정경사 수심단면에서 평균수위의 상승/저하 효과를 고려한 해빈류의 예측 (Prediction of Longshore Current with Set-up/down Effect on a Plane Beach)

  • 이철응;김영중;최한규
    • 산업기술연구
    • /
    • 제17권
    • /
    • pp.277-289
    • /
    • 1997
  • The numerical model for prediction of longshore current with set-up/down effect on a plane beach is developed using the longshore component of the depth-integrated momentum balance equation. To predict the longshore current, the wave height model should first be formulated because the longshore current depends on the wave height directly. Two wave model, regular wave model and random wave model, are developed based on the energy flux balance equation. Also, the numerical model estimating the set-up inside the shoreline is developed using both the on-offshore momentum equation and the moving boundary technique. The numerical models are verified by the analytical solution, and compared with laboratory data. It is found from the comparison that developed models may be predicted accurately the longshore current with set-up/down effect on a plane beach.

  • PDF

고분자 절연재료내의 Tree성장과 유전손 특성에 미치는 초음파의 영향 (The Effect of Ultrasonic Wave on the Characteristics of Tree Growth and Dielectric Loss in Polymer Insulation Material)

  • 전춘생;김원식;김상현;박원규
    • 대한전기학회논문지
    • /
    • 제40권12호
    • /
    • pp.1242-1251
    • /
    • 1991
  • This paper is to investigate the tree growth phenomena and the characteristics of $\varepsilon$' and tan$\delta$ for the effect of ultrasonic wave on polymer insulation material. The conclusions are as follows. 1) As the pressure amplitude of ultrasonic wave is larger and its irradiated time is longer, tree inception voltage and its breakdown voltage in specimen are smaller, and tree growing is faster. 2) As the irradiated quantity of ultrasonic wave is more increased, the value of tan$\delta$ is larger, but the value of $\varepsilon$' is almost constant. 3) The effect by the pressure amplitude of ultrasonic wave is greater than that by its irradiated time on the insulation characteristics of polymer material.

Dispersion of waves in FG porous nanoscale plates based on NSGT in thermal environment

  • Ebrahimi, Farzad;Seyfi, Ali;Dabbagh, Ali
    • Advances in nano research
    • /
    • 제7권5호
    • /
    • pp.325-335
    • /
    • 2019
  • In the present study, nonlocal strain gradient theory (NSGT) is developed for wave propagation of functionally graded (FG) nanoscale plate in the thermal environment by considering the porosity effect. $Si_3N_4$ as ceramic phase and SUS304 as metal phase are regarded to be constitutive material of FG nanoplate. The porosity effect is taken into account on the basis of the newly extended method which considers coupling influence between Young's modulus and mass density. The motion relation is derived by applying Hamilton's principle. NSGT is implemented in order to account for small size effect. Wave frequency and phase velocity are obtained by solving the problem via an analytical method. The effects of different parameters such as porosity coefficient, gradient index, wave number, scale factor and temperature change on phase velocity and wave frequency of FG porous nanoplate have been examined and been presented in a group of illustrations.