• Title/Summary/Keyword: Wave Basin

Search Result 205, Processing Time 0.029 seconds

On Generation Methods of Multi-directional Random Waves in 3-D Numerical Wave Basin with Non-Reflected Wave Generation System (무반사 조파시스템을 적용한 3차원 수치파동수조에서 다방향불규칙파의 조파방법)

  • Hur, Dong-Soo;Lee, Woo-Dong;Jeon, Ho-Sung;Yeom, Gyeong-Seon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3B
    • /
    • pp.305-308
    • /
    • 2011
  • In this study, generation methods of 3-D multi-directional random wave are examined using the fully non-linear numerical model with non-reflected wave generation system (LES-WASS-3D). Directional distribution functions obtained by EMLM method are compared for multidirectional random waves generated by various generation methods. As a results, it is revealed that multi-directional wave field can be simulated using LES-WASS-3D.

Development and Application of Diffusion Wave-based Distributed Runoff Model (확산파에 기초한 분포형 유출모형의 개발 및 적용)

  • Lee, Min-Ho;Yoo, Dong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.7
    • /
    • pp.553-563
    • /
    • 2011
  • According to the improvement of computer's performance, the development of Geographic Information System (GIS), and the activation of offering information, a distributed model for analyzing runoff has been studied a lot in recently years. The distribution model is a theoretical and physical model computing runoff as making target basin subdivided parted. In the distributed model developed by this study, the volume of runoff at the surface flow is calculated on the basis of the parameter determined by landcover data and a two-dimensional diffusion wave equation. Most of existing runoff models compute velocity and discharge of flow by applying Manning-Strickler's mean velocity equation and Manning's roughness coefficient. Manning's roughness coefficient is not matched with dimension and ambiguous at computation; Nevertheless, it is widely used in because of its convenience for use. In order to improve those problems, this study developed the runoff model by applying not only Manning-Strickler's equation but also Chezy's mean velocity equation. Furthermore, this study introduced a power law of exponential friction factor expressed by the function of roughness height. The distributed model developed in this study is applied to 6 events of fan-shape basin, oblong shape test basin and Anseongcheon basin as real field conditions. As a result the model is found to be excellent in comparison with the exiting runoff models using for practical engineering application.

Runoff Analysis due to the Moving Rainstorms on the Nonsymmetric Basin Shapes (비대칭 유역형상에 대한 이동강우의 유출영향분석)

  • Jeon, Min-Woo
    • Journal of Wetlands Research
    • /
    • v.11 no.1
    • /
    • pp.1-13
    • /
    • 2009
  • The influence of moving rainstorms to runoff was analysed for the nonsymmetric shaped basins using kinematic wave theory. The distribution types of moving rainstorms are uniform, advanced, delayed and intermediate type, the nonsymmetric shaped basins are square, oblong and elongated shape. The runoff hydrographs were simulated and the characteristics were compared with the symmetric shaped basins for the rainstorms moving up, down and cross the basins with various velocities. The smallest differences of peak runoff of symmetric and nonsymmetric basins are appeared in the case of elongated basin, and the largest differences are shown at the oblong basin for the downstream direction. The identical results are shown for the upstream direction. The greatest peak runoff differences are shown in the delayed type rainstorm and the smallest differences are in the advanced type rainstorm for the crossstream direction. The oblong shaped basin generates the longest peak time and shortest peak time for the elongated shape basin.

  • PDF

Effects of Wind Stress Curl, Topography, and Stratification on the Basin-scale Circulations in a Stratified Lake (바람의 회전응력, 지형, 그리고 성층화가 성층 호수의 물 순환에 미치는 영향)

  • Chung, Se-Woong;Schladow, S.G.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.53-53
    • /
    • 2015
  • Basin-scale motions in a stratified lake rely on interactions of spatially and temporally varying wind force, bathymetry, density variation, and earth's rotation. These motions provide a major driving force for vertical and horizontal mixing of inorganic and organic materials, dissolved oxygen, storm water and floating debris in stratified lakes. In Lake Tahoe, located between California and Nevada, USA, basin-scale circulations are obviously important because they are directly associated with the fate of the suspended particulate materials that degrade the clarity of the lake. A three-dimensional hydrodynamic model, ELCOM, was applied to Lake Tahoe to investigate the underlying mechanisms that determine the characteristics of basin-scale circulations. Numerical experiments were designed to examine the relative effects of various mechanisms responsible for the horizontal circulations for two different seasons, summer and winter. The unique double gyre, a cyclonic northern gyre and an anti-cyclonic southern gyre, occurred during the winter cooling season when wind stress curl, stratification, and Coriolis effect were all incorporated. The horizontal structure of the upwelling and downwelling formed due to basin-scale internal waves found to be closely related to the rotating direction of each gyre. In the summer, the spatially varying wind field and the Coriolis effect caused a dominant anti-cyclonic gyre to develop in the center of the lake. In the winter, a significant wind event excited internal waves, and a persistent (2 week long) cyclonic gyre formed near the upwelling zone. Mechanism of the persistent cyclonic gyre is explained as a geostrophic circulation ensued by balancing of the baroclinc pressure gradient (or baroclinic instability) and Coriolis effect. Topographic effect, examined by simulating a flat bathymetry with constant depth of 300m, was found to be significant during the winter cooling season but not as significant as the wind curl and baroclinic effects.

  • PDF

Marine Meterological Characteristics by Comparison of High wind-wave alert and Moored Buoy data off the coast of the East Sea between 2006 and 2013 (동해 외해역 해양 기상 특성 및 풍랑특보와 부이 관측 자료 비교 (2006-2013년))

  • Kim, Yun-Bae;Kim, Sang-Mi
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.26 no.5
    • /
    • pp.1013-1025
    • /
    • 2014
  • Marine meterological characteristics off the coast in the East Sea between 2006 and 2013 were investigated by comparing the high wind-wave alert and moored-measured significant wave high. Monthly and yearly variations of the high wind-wave alert duration off the coast in the central part of the East Sea are correlated with those of the significant wave height measurement with their minima in June and 2008 and maxima in December and 2012. Both the high wind-wave alert duration and significant wave height increase remarkably during 2010-2013 when compared with during 2006-2009. The remarkable increase, occurring dominantly in December, seems to be related with Arctic oscillation variability. However, the comparisons reveal that only about a half of high wind-wave alerts satisfy the criteria for issuing the high wind-wave alert. To issue the high wind-wave alert, the wind speed at the sea should exceed 14 m/s or the significant wave height should be higher than 3 m. The high wind-wave alerts unsatisfying the significant wave height criteria are issued mainly during spring and summer. These results imply that additional surface buoy moorings in the open basin of the East Sea are necessary for more accurate issue of the high wind-wave alert.

항만정온도 해석을 위한 수치모형적용과 상호비교분석

  • Lee, Dong-Hyeon;Kim, Gang-Min;Choe, Se-Ho;Lee, Jung-U
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.06a
    • /
    • pp.255-257
    • /
    • 2014
  • The harbor tranquility is indicating the level of calmness in the mooring basin of harbor. It relates keenly to berthing/unberthing and cargo handling works but also it is an important indicator to get the minimum water area as the safe refuge. Therefore, it is necessary to analyze in complex the variation of wave height and direction caused by wave refraction, diffraction, shoaling and reflection from the incident waves from outside the harbor. In order to check the calmness inside a harbor, the numerical models are being used currently need fundamental reviews according to the difference of results which depend on their respective features. In this study, hence, it was introduced the validity of numerical models by comparing the computational results for Hupo harbor.

  • PDF

Marina Development Impact on the Tranquility of Small Coast Harbor

  • Lee, Dong-Hyun;Lee, Joong-Woo;An, Hyo-Jae;Kim, Kang-Min
    • Journal of Navigation and Port Research
    • /
    • v.38 no.6
    • /
    • pp.673-681
    • /
    • 2014
  • Due to the increased demand for safety and security requirements on the port infrastructure, the harbor tranquility is one of the important parameter in the mooring basin of harbor. It relates keenly to berthing/unberthing and cargo handling works but also it is an important indicator to get the minimum water area as the safe refuge. Hupo harbor is a national coastal harbor located in east coast of Korea and a development plan for a new marina near the entrance is being carried out including berth layouts, breakwater extensions, 300m marina berths, dredging and land reclamation works. The new plan will impact on calmness of the existing port. Therefore, it is necessary to analyze in complex the variation of wave height and direction caused by wave refraction, diffraction, shoaling and reflection from the incident waves from outside the harbor. In order to check the calmness inside a harbor, the numerical models are being used currently need fundamental reviews according to the difference of results which depend on their respective features. In this study, hence, it was introduced the validity of numerical models by comparing the computational results with the hydraulic model experiment. The current investigations contribute to the existing development recommendations and provide further solutions for port planning.

Crustal structure of the Korean peninsula (한반도 지각 속도구조)

  • Kim, Ki-Young;Hong, Myung-Ho
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.12a
    • /
    • pp.43-51
    • /
    • 2007
  • In order to investigate the velocity structure of the southern part of the Korean peninsula, exploded seismic signals were recorded for 120 s along a 294-km WNW-ESE line and 150 s along a 335-km NNW-SSE line in 2002 and 2004, respectively. Velocity tomograms were derived from inverting P-wave and S-wave first arrival times. The raypaths indicate several midcrust interfaces. The shallowest one is at the approximate depth of $2{\sim}3\;km$ with refraction velocities of approximately Vp=6.0 and Vs=3.5 km/s, respectively. The second one of $15{\sim}17\;km$ depth has refraction velocities of approximately Vp=7.1 and Vs=3.7 km/s, respectively. The deepest significant interface varies in depth from 30.8 km to 36.1 km. The critically refracting Vp of $7.8{\sim}8.1\;km/s$ and Vs of $4.2{\sim}4.6\;km/s$ along this interface which may correspond to the Moho discontinuity. The velocity tomograms show (1) existence of a low-velocity zone centered at $6{\sim}7\;km$ depth under the Okchon fold belt and the Yeongnam massif, (2) extension of the Yeongdon fault down to greater than 10 km, and (3) existence of high-velocity materials under the Gyeongsan basin less than 4.2 km thick.

  • PDF

Experimental Study on Performance of Wave Energy Converter System with Counterweight

  • Han, Sung-Hoon;Jo, Hyo-Jae;Lee, Seung-Jae;Hwang, Jae-Hyuck;Park, Ji-Won
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • In order to convert wave energy into large quantities of high-efficiency power, it is necessary to study the optimal converter system appropriate for the environment of a specific open ocean area. A wave energy converter system with a counterweight converts the translation energy induced from the heave motion of a buoy into rotary energy. This experimental study evaluated the primary energy conversion efficiency of the system, which was installed on an ocean generating basin with a power take-off system. Moreover, this study analyzed the energy conversion performance according to the weight condition of the buoy, counter-weight, and flywheel by changing the load torque and wave period. Therefore, these results could be useful as basic data such as for the optimal design of a wave energy converter with a counterweight and improved energy conversion efficiency.

Study on Performance of a Floating-Type OWC Chamber in Regular Waves (부유식 OWC 챔버의 파랑중 거동특성 연구)

  • 홍도천;현범수;홍시영
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.43-51
    • /
    • 1992
  • The hydrodynamic performance of a floating-type OWC (Oscillating Water Column) chamber is studied numerically and experimentally in this study. The numerical approach based on two-dimensional linear theory of floating wave absorber was attempted to design an efficient wave energy absorber, while model test was performed in a wave basin to test a performance of designed model and validate the reliability of developed numerical code. The focus of study is placed mainly on the experimental study to evaluate the principal characteristics of the designed OWC chamber in regular waves. The effects of the variation of wave height on OWC device and of air pressure inside chamber are also presented. Finally, the measured results were compared with computed ones, and it was shown that the designed chamber works with high efficiency $(\eta_H>1$ over most of wave lengths covered by present study. It is therefore concluded that the developed code is capable of being successfully employed to design OWC chambers at various ocean environments, even though there exist some minor discrepancies between measured and computed results.

  • PDF