• 제목/요약/키워드: Watershed runoff

검색결과 1,050건 처리시간 0.024초

관개논과 산림유역의 홍수유출 특성 비교 (A Comparative Study of Storm Runoff Characteristics far Irrigated Paddy Fields and forest Watershed)

  • 임상준;박승우;강문성
    • 한국농공학회지
    • /
    • 제44권3호
    • /
    • pp.65-72
    • /
    • 2002
  • Rainfall and runoff data from a forested watershed and irrigated rice paddies at the Bal-an experimental watershed were monitored and analyzed to investigate the variations of runoff characteristics with different land use. The comparisons were conducted fourteen storm events ranging 21.8∼190.2 mm of rainfall. Field data showed that direct runoff from paddies and forested watershed are not significantly different in volume. The peak discharge from forest watershed was less than that from paddies far lighter storms, but became greater fur heavier storms. The peak runoff from the forest watershed was 39 percent greater than from the paddies. The results demonstrate that paddies play an important role to reduce peak discharge from heavy storms as compared to forest.

제주도 하천에 대한 SWAT 모형의 적응 (Application of SWAT Model on Rivers in Jeju Island)

  • 정우열;양성기
    • 한국환경과학회지
    • /
    • 제17권9호
    • /
    • pp.1039-1052
    • /
    • 2008
  • The SWAT model developed by the USDA-Agricultural Research service for the prediction of rainfall run-off, sediment, and chemical yields in a basin was applied to Jeju Island watershed to estimate the amount of runoff. The research outcomes revealed that the estimated amount of runoff for the long term on 2 water-sheds showed fairly good performance by the long-term daily runoff simulation. The watershed of Chunmi river located the eastern region in Jeju Island, after calibrations of direct runoff data of 2 surveys, showed the similar values to the existing watershed average runoff rate as 22% of average direct runoff rate for the applied period. The watershed of Oaedo river located the northern region showed $R^2$ of 0.93, RMSE of 14.92 and ME of 0.70 as the result of calibrations by runoff data in the occurrence of 7 rainfalls.

국립공원내 홍수피해 저감을 위한 미계측 산림지역의 설계홍수량 추정 (Estimation of Design Flood Runoff in Ungaged Forest Watershed to Reduce Flood Damage within the National Park)

  • 김상민;임상준;이상호;김형호;마호섭;정원옥
    • 한국농공학회논문집
    • /
    • 제51권5호
    • /
    • pp.107-113
    • /
    • 2009
  • The purpose of this study is to estimate the design flood runoff for ungaged forest watershed to reduce the flood damage in national park. Daewonsa watershed in Jirisan National Park was selected as study watershed, of which characteristic factors were obtained from GIS data. Flood runoff was simulated using SCS unit hydrograph module in HEC-HMS model. SCS Curve Number (CN) was calculated from forest type area weighted average method. Huff's time distribution of second-quartile storm of the Sancheong weather station, which is nearest from study watershed, was used for design flood runoff estimation. Critical storm duration for the study watershed was 3 hrs. Based on the critical duration, the peak runoff for each sub-watershed were simulated. It is recommended to monitor the long-term flow data for major stream stations in National Park for a better reliable peak runoff simulation results.

도시지역 비점오염물질의 유출특성에 관한 연구 - 달서천 및 대명천을 중심으로 (A Study on the Runoff Characteristics of Non-point Source in Urban Watershed - Case Study on the Dalseo and Daemyung Watershed)

  • 장성호;박진식
    • 한국환경과학회지
    • /
    • 제14권12호
    • /
    • pp.1171-1176
    • /
    • 2005
  • This study was conducted to identify the runoff characteristics of non-point source according to rainfall in Dalseo and Daemyung watershed. Land-uses of the Dalseo and Daemyung watershed were surveyed to urban $72.1\%$ and mountainous $6.7\%$, and urban $49.3\%$ and mountainous $20.5\%$, respectively Mean runoff coefficients in each area were estimated to Dalseo watershed 0.49 and Daemyung watershed 0.16. In the relationship between the rainfall and peak-flow correlation coefficients(r) were determined to Dalseo watershed 0.9060 and Daemyung watershed 0.5620. In the relationship between the antecedent dry period and flrst flow runoff correlation coefficients(r) were determined to Dalseo watershed 0.7217 and Daemyung watershed 0.2464. In the relationship between the rainfall and watershed loading, exponent values of SS in Dalseo and Daemyung watershed were estimated to 0.54 and 0.496, respectively.

수문모니터링과 물수지법을 이용한 농업용 저수지 유역 유출곡선번호 추정 (Estimation of Runoff Curve Number for Agricultural Reservoir Watershed Using Hydrologic Monitoring and Water Balance Method)

  • 윤광식;김영주;윤석군;정재운;한국헌
    • 한국농공학회논문집
    • /
    • 제47권3호
    • /
    • pp.59-68
    • /
    • 2005
  • The rainfall-runoff potential of Jangseong reservoir watershed was studied based on SCS (Soil Conservation Service, which is now the NRCS, Natural Resources Conservation Service, USDA) runoff curve number (CN) technique. Precipitation and reservoir operation data had been collected. The rainfall-runoff pairs from the watershed for ten years was estimated using reservoir water balance analysis using reservoir operation records. The maximum retention, S, for each storm event from rainfall-runoff pair was estimated for selected storm events. The estimated S values were arranged in descending order, then its probability distribution was determined as log-normal distribution, and associated CNs were found about probability levels of Pr=0.1, 0.5, and 0.9, respectively. A subwatershed that has the similar portions of land use categories to the whole watershed of Jangseong reservoir was selected and hydrologic monitoring was conducted. CNs for subwatershed were determined using observed data. CNs determined from observed rainfall-runoff data and reservoir water balance analysis were compared to the suggested CNs by the method of SCS-NEH4. The $CN_{II}$ measured and estimated from water balance analysis in this study were 78.0 and 78.1, respectively. However, the $CN_{II}$, which was determined based on hydrologic soil group, land use, was 67.2 indicating that actual runoff potential of Jangseong reservoir watershed is higher than that evaluated by SCS-NEH4 method. The results showed that watershed runoff potential for large scale agricultural reservoirs needs to be examined for efficient management of water resources and flood prevention.

L-THIA ArcView GIS 모형을 이용한 대청호 만입부 유역의 직접유출 및 비점오염배출부하 산정 적용성 평가 (Evaluation of Estimated Storm runoff and Non-point Pollutant Discharge from Upper Watershed of Daecheong Reservoir during Rainy Season using L-THIA ArcView GIS Model)

  • 최재완;이혁;신동석;천세억
    • 한국물환경학회지
    • /
    • 제25권6호
    • /
    • pp.984-993
    • /
    • 2009
  • There have been growing concerns of algal growth at Daecheong reservoir due to eutrophication with excess nutrient inflow. Rainfall-driven runoff and pollutant from watershed are responsible for eutrophication of the Daecheong reservoir. In this study, two subwatersheds of the Daecheong reservoir were selected and water quality characteristics were analyzed. The L-THIA ArcView GIS model was used for evaluation of direct runoff and water quality. The $R^2$ and the EI value for direct runoff were 0.95 and 0.93 at Wol-oe watershed and were 0.81, 0.71 at An-nae watershed, respectively. The $R^2$ for SS, T-P were 0.53, 0.95 at Wol-oe watershed and 0.89, 0.89 at An-nae watershed, respectively. It has been proven that the L-THIA ArcView GIS model could be used for evaluating direct runoff and pollutant load from the watershed with reasonable accuracies.

도시 및 농촌 유역 하천에서의 강우유출 특성 비교 (Comparison of Rainfall-Runoff Characteristics at Stream in Urban and Rural Watershed)

  • 김호섭;김상용;박윤희
    • 한국물환경학회지
    • /
    • 제34권6호
    • /
    • pp.650-660
    • /
    • 2018
  • The objective of this study was to compare the rainfall-runoff characteristics in streams of classified urban and rural watershed using land use and population density. EMC (event mean concentration) of BOD, COD, TP and SS increased significantly in urban and rural watershed, but that of TN remained unchanged. Although there were no significant differences in EMC of BOD, COD, TN, TP depending on the watershed characteristics, EMC of BOD and COD significantly increased in the urban watershed, while EMC of TP increased in the rural watershed. In the urban watershed, the first flush time was faster and the first flush effect was stronger in BOD, COD, and TP. However, the difference between cumulative mass and cumulative volume was found to be less than 0.2 in the rural watershed, indicating a weak first flush effect. The discharged masses of BOD (70 %), COD (64 %), and TP (66 %) in the first flush of runoff were higher in urban watershed, while TN (67 %) was higher in rural watershed. The reproducibility of first flush time and the strength of first flush using CV (coefficient of variation) was found to be more reproducible for first flush time in both watersheds. In rural watershed, the CV value of first flush time for TP out of water quality parameters was lower. Whereas the CV values of first flush time for BOD, COD and TP in urban watersheds were similar.

계절유역 모형을 사용한 유량의 공간적분포 결정 (Areal Distribution of Runoff Volume by Seasonal Watershed Model)

  • 선우중
    • 물과 미래
    • /
    • 제17권2호
    • /
    • pp.125-131
    • /
    • 1984
  • watershed Model by mathematical formulation is one of the powerful tool to analyze the hydrologic process in a watershed. The seasonal watershed model is one of the mathematial model from which the monthly streamflow can be simulated and forcasted for given precipitaion data. This model also enables us to compute the monthly runoff at each subbgasin when the basin is subdivided into several small subbasins. The computation of runoff volume makes a Prediction of the areal distirbution of runoff volume for a given precipitation data. Several basins in Han River basin were chosen to simulate the monthly runoff and compute the runoff at each subbasin. A simple logarithmic regression were conducted between runoff ratio and area ratio. The correlation was very high and the equation can be used for prediciting flood volume when flood at downstream gaging station is know.

  • PDF

객체지향기법을 이용한 홍수유출해석 (Flood Runoff Analysis Using an Object -Oriented Runoff Model)

  • 김상민;박승우
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1999년도 Proceedings of the 1999 Annual Conference The Korean Society of Agricutural Engineers
    • /
    • pp.51-56
    • /
    • 1999
  • An object-orient watershed runoff model was formulated using the SCS curve number method and routing routines. The four objects included in the model were rainfall , hydrologic unit, reservoir, and channel. Each object considers the data and simulation method to depict the runoff processes. the details of which were presented and discusses in the paper. The resulting model was applied to the HS #3 watershed of the Balan Watershed Project, which is 412.5 ha in size and relatively steep in landscape. The simulated runoff hydrographs from the model were close to the observed data.

  • PDF

장단기유출 양용저유 탱크 모델의 개발에 관한 연구 (II) (Studies on the Development of Storage Tank Model for both Long and Short Terms Runoff (II))

  • 이순혁;박명근
    • 한국농공학회지
    • /
    • 제33권2호
    • /
    • pp.51-60
    • /
    • 1991
  • The main objective of this study is to examine the adaptability for the large watershed of the storage tank model which can be applied for the analysis of both long and short terms runoff developed on the basis of hydrologic data for a smaH mountaineous watershed. The results obtained in this study are summarized as follows ; 1. Areal rainfalls of the Dae Chong watershed were calculated by Thiessen method composed of 9 Thiessen networks. 2. Optimal parameters for two types, Model A and Model B of tank models were derived through calibration procedure by standardized Powell method. 3. Monthly simulated flows of Model B are seemed to be closer to the monthly observed than those of Model A during calibration period in the long terms runoff. 4. Relative errors for the simulated flood flows of Model B were apperaed as lower percentage to the observed than those of Model A during calibration period in the short terms runoff. 5. Daily simulated hydrographs of Model B are seemed to be closer to the daily observed than those of Model A during verification period in the long terms runoff. Significance of Model B was highly acknowledged in comparison with Model A in the correlation analysis between annual observed and annual simulated runoff. 6. Reproducibility of simulated flows for Model B is generally seemed to be better than that of Model A during calibration period in the short terms runoff. 7. It can be concluded that reproducibility of Model B is superior to that of Model A in the long and short terms runoff even a large watershed like the result of the small one. 8. It was verified that adaptability for the large watershed of Model B is superior to that of Model A between the two models which were developed by a small watershed characteristics for both long and short terms runoff. 9. Further study for getting a suitable tank model is desirable to be established by the decision, calibration method of initial parameters of tank model and by additional application of another watershed with different watersheds and meterological characteristics.

  • PDF