• Title/Summary/Keyword: Watershed Pollution

Search Result 526, Processing Time 0.029 seconds

Evaluation of Water Quality Characteristics on Tributaries of Mankyeong River Watershed (만경강 유역내 하천의 특성별 영향 평가)

  • Yun, Sun-Gang;Lee, Jong-Sik;Jung, Goo-Bok;Kim, Min-Kyeong;Kim, Seon-Jong;Koh, Mun-Hwan;Eom, Ki-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.4
    • /
    • pp.237-242
    • /
    • 2002
  • A survey on four tributaries along with Mankyeong River was carried out to get the information far the water quality improvement and control. Typical paddy farming were major agricultural practices in Kosancheon and Soyangcheon. Iksancheon was livestock raising watershed. Chucheon was urban watershed. Water quality in six sites of main stream and four sites of tributaries in Mankyeong River were investigated from May to August in 2001. The concentration of nutrient in main stream of Mankyeong River were in the range of 3.78$\sim$12.68 mg/L for total nitrogen, 0.043$\sim$0.864 mg/L for total phosphorus, 2.59$\sim$13.29 mg/L for BOD and 12.9$\sim$119.5 mg/L for COD, respectively. Water quality of Mankyeong River mostly exceeded the standard water quality criteria of Korea. Major causes of water pollution were evaluated as sewage of swine and urban area. Among the four tributaries, water quality in agricultural practices, Kosancheon and Soyangcheon was relatively less polluted. While, the highest level of water pollution measured in Iksancheon was due to livestock. The water quality of Iksancheon and Chucheon was generally more polluted in the dry period than in rainy period.

Evaluation of Runoff and Sediment Yield Reduction with Diversion Ditch and Vegetated Swale Using WEPP Model (WEPP 모형을 이용한 우회수로 및 식생수로의 유출 및 토사유출 저감 평가)

  • Choi, Jae-Wan;Shin, Dong-Seok;Kim, Ik-Jae;Lim, Kyoung-Jae
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.11
    • /
    • pp.863-873
    • /
    • 2011
  • It has been known that soil erosion caused by water has been a serious problem worldwide. Thus various modeling techniques for conservationists, farmers, and other land users have been developed and utilized to estimate effects of numerous site-specific Best Management Practices on soil erosion reduction. The physical process-based WEPP model would provide both temporal and spatial estimates of soil loss within small watersheds and for hillslope profiles within small watersheds. Thus, the WEPP watershed version was applied to study watershed, located at Jawoon-ri, Gangwon to simulate diversion ditch and vegetated swale with detailed input data set. The sediment yield and runoff reduction rates reduced by 5.8% and 29.6% with diversion ditch and 9.8% and 14.5% with vegetated swale. With vegetated diversion ditch, runoff and sediment yield could be reduced by 11.8% and 40.4%, respectively. Based on the results obtained in this study, the WEPP model would be an useful tool to measure runoff and sediment yield reduction and establish site-specific sediment reduction best management plan.

Analysis of Pollutants Discharge due to the Change of Impervious Land in Urban Area Using Watershed Model (유역모형을 이용한 도시지역의 불투수면 변화에 따른 오염물질 유출 해석)

  • Gong, Seok Ho;Kim, Tae Geun
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.1
    • /
    • pp.73-82
    • /
    • 2018
  • The purpose of this study is the evaluation of the impact of increase in impervious areas due to urbanization on the pollutant discharge using the HSPF model at Musim watershed. Model calibration and validation were performed based on the observed data 2015 and 2014, all simulation items have been successfully simulated such as flow, BOD, and TP. The land cover map used in the model reflected on the land use status of the Musim watershed in 2015 and the application of the development areas and locations. As a result of simulation, during rainfall daily pollutant load with the increased impervious land increased more than that before the development. However, the pollutant load decreased during the non-rainfall time. Annual pollutant load in rainfall time was significantly higher than that in non-rainfall time, BOD and TP increased. The simulation of non-point source pollutant load was applied under two assumptions, such as the increased area of impervious land and the non-change number of point source load before and after development. As the result of a simulation, the non-point source pollutant load after development was bigger than those before development. It was necessary to take measures to control non-point source pollution at the consideration status of development.

Estimation of Water Quality Environment in Youngsan and Seumjin River Basins (영산강과 섬진강 유역의 하천 수질환경 평가)

  • 양해근;최희철
    • Journal of the Korean Geographical Society
    • /
    • v.38 no.1
    • /
    • pp.16-31
    • /
    • 2003
  • The water quality environment in Youngsan and Seumjin river basins was investigated based on the concept of the comprehensive Water Quality Index (WQI) and a spacial pollution source. Artificial factors influencing to river water quality have been analyzed. The specific delivery load of Youngsan river basin was found to be 8.34~97.25 kg/day/$\textrm{km}^2$, Gomagwon stream and Gwangju stream showed the relatively high rates as 97.25 kg/day/$\textrm{km}^2$ and 86.06 kg/day/$\textrm{km}^2$, respectively. The specific delivery load in Seumjin river basin was estimated to be 10.98∼19.51 kg/day/$\textrm{km}^2$, Suggesting no Significant Contribution of pollution. WQI of Youngsan watershed revealed 1.36~3.45, whereas Seumjin watershed showed a relatively low value of 0.5~1.47 And it is concluded that the specific delivery load suggested in this study provides the essential core data of the upper limit of pollutants receptor in the watershed area studied. From this study, it is suggested that the integrated environmental management of river basin requires the analysis of pollutants generation rate of the basin and the receptor capability for the self-purification.

Development of Regression Models for Estimation of Unmeasured Dissolved Organic Carbon Concentrations in Mixed Land-use Watersheds (복합토지이용 유역의 수질 관리를 위한 미측정 용존유기탄소 농도 추정)

  • Min Kyeong Park;Jin a Beom;Minhyuk Jeung;Ji Yeon Jeong;Kwang Sik Yoon
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.2
    • /
    • pp.162-174
    • /
    • 2023
  • In order to prevent water pollution caused by organic matter, Total Organic Carbon(TOC) has been adopted indicator and monitored. TOC can be divided into Dissolved Organic Carbon(DOC) and Particulate Organic Carbon(POC). POC is largely precipitated and removed during stream flow, which making DOC environmentally significant. However, there are lack of studies to define spatio-temporal distributions of DOC in stream affected by various land use. Therefore, it is necessary to estimate the past DOC concentration using other water quality indicators to evaluate status of watershed management. In this study, DOC was estimated by correlation and regression analysis using three different organic matter indicators monitored in mixed land-use watersheds. The results of correlation analysis showed that DOC has the highest correlation with TOC. Based on the results of the correlation analysis, the single- and multiple-regression models were developed using Biochemical Oxygen Demand(BOD), Chemical Oxygen Demand(COD), and TOC. The results of the prediction accuracy for three different regression models showed that the single-regression model with TOC was better than those of the other multiple-regression models. The trend analysis using extended average concentration DOC data shows that DOC tends to decrease reflecting watershed management. This study could contribute to assessment and management of organic water pollution in mixed land-use watershed by suggesting methods for assessment of unmeasured DOC concentration.

L-THIA Modification and SCE-UA Application for Spatial Analysis of Nonpoit Source Pollution at Gumho River Basin (환경부 토지피복 중분류 적용을 위한 L-THIA 모델 수정과 SCE-UA연계적용에 의한 금호강유역 비점오염 분포파악)

  • Kim, Jung-Jin;Kim, Tae Dong;Choi, Dong Hyuk;Lim, Kyoung Jae;Engel, Bernard;Jeon, Ji-Hong
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.2
    • /
    • pp.311-321
    • /
    • 2009
  • Long-Term Hydrologic Impact Assessment (L-THIA) was modified to improve runoff and pollutant load prediction for Korean watersheds with changes in land use classification and event mean concentration produced from observed data in Korea. The L-THIA model was linked with SCE-UA, which is one of the global optimization techniques, to automatically calibrate direct runoff. Modified L-THIA model was applied to Gumho River Basins to analyze spatial distribution of nonpoint source pollution. The results of model calibration during 1991~2000 and validation during 1981~1990 for direct runoff represented high model efficiency of 0.76 for calibration and 0.86 for validation. As a results of spatial analysis of nonpoint source pollution, the BOD was mainly loaded from urban area but SS, TN, and TP from agricultural area which is mainly located along the stream. Modified L-THIA model improve its accuracy with minimum imput data and application efforts. From this study, we can find out the L-THIA model is very useful tool to predict direct runoff and pollutant loads from the watershed and spatial analysis of nonpoint source pollution.

A Study on the Water Quality Patterns of Unit Watersheds for the Management of TMDLs - in Nakdong River Basin - (수질오염총량관리 단위유역 수질변화 유형분석 - 낙동강수계를 대상으로 -)

  • Park, Jun Dae;Kim, Jin Lee;Rhew, Doug Hee;Jung, Dong Il
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.2
    • /
    • pp.279-288
    • /
    • 2010
  • The water quality variations or changes are closely relevant to the characteristics of unit watersheds and have an effect on the attainment of their water quality goal. This study was conducted to analyze the water quality distribution and its change patterns of unit watersheds in Nakdong river basin. It revealed that 25 unit watersheds out of 41 showed the normality in water quality. Most of unit watersheds had a considerable variation in water quality, especially in the season of spring and summer but a little in terms of flow rate. Annual relative differences in water quality ranged from 13.0 to 26.6% with the maximum of 75%. 28 unit watersheds (62%) had the tendency to decrease in water quality as the flow rate increased while 13 (38%) to increase. The extension of standard flow led to considerable differences in water quality depending on its ranges, which meant uncertainties might be included in the process of TMDL development. It is suggested that annual average flow rate should be chosen as a standard flow in the area where the water quality change has little relation to the flow rate.

Assessment of Water Pollution by the discharged water of the Abandended Mine

  • Kim, Hee-Joung;Yang, Jae-E.;Lee, Jai-Young;Park, Beang-Kil;Choi, Sang-Il;Jun, Sang-Ho
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.167-174
    • /
    • 2004
  • Several metalliferous and coal mines, including Myungjin, Seojin and Okdong located at the upper watershed of Okdong stream, were abandoned or closed since 1988 due to the mining industry promotion policy and thus disposed an enormous amount of mining wastes without a proper treatment facilities, resulting in water pollution in the downstream areas. AMD and waste effluents from the closed coal mines were very strongly acidic showing pH ranges of 2.7 to 4.5 and had a high level of total dissolved solid (TDS) showing the ranges of 1,030 to 1,947 mg/L. Also heavy metal concentrations in these samples such as Fe, Cu, Cd and anion such as sulfate were very high. These parameters of AMD and effluents were considered to be highly polluted as compared to those in the main stream area of the Okdong river and be major pollutants for water and soil in tile downstream area. Pollution indices of the surface water at the upper stream of Okdong river where AMD of the abandoned coal mines was flowed into main stream were in the ranges of 16.3 to 47.1. On the other hand, those at the mid stream where effluents from tailing dams and coal mines flowed into main stream were in tile ranges of 10.6 to 19.5. However, those at the lower stream were ranged from 10.6 to 14.9 These results indicated that mining wastes such as AMD and effluents from the closed mines were tile major source to water pollution at the Okdong stream areas.

  • PDF

Research on the Evaluation of Impaired Waterbody using the Flowrate Group at TMDL Unit Watershed in Nakdong River Basin (수질오염총량관리 단위유역 유량그룹별 수체 손상 분석)

  • Hwang, Ha-Sun;Kim, Sang-Soo;Kim, Jin-Lee;Park, Bae-Kyung
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.933-942
    • /
    • 2012
  • The purpose of this study is to evaluate the degree of waterbody impairment according to the flow conditions and present to the appropriate water quality improvement alternatives using observed water quality and flow for Total Maximum Daily Load (TMDL) implementation at 39 unit watersheds the nakdong river basin. Observed water quality data for 7 years are divided into five cumulative flow frequency group and comparing the each observed water quality data and TMDL Target water quality (TWQ) the last evaluate the water quality is impaired group. We found that the cumulative flow frequency group-specific the average excess rate of V group was the highest (32.86%), followed by the IV group (26.04%), group III (23.36%), II group (22.67%), I group (20.70%), the degree of impaired waterbody tended to be inversely proportional to the flow rate. Resulted from cumulative flow frequency group of impaired water quality assessment, 13 unit watersheds are impaired from a group IV and group V affected by point sources. Therefore, improvement of sewage discharge and the initial composition of the riparian buffer zone are needed. Nakbon F, Namkang D and Namkang E within 13 unit watersheds are impaired from group II and III affected by non-point sources. Therefore, application of Best Management Practices (BMPs) is needed for these watersheds. Evaluation of impaired waterbody using Cumulative flow frequency group is able to determine the extent of the judgment to TWQ exceeded by the flow conditions and helps proper setting Standard flow and planning pollutant reduction for TMDL.

Temporal and Spatial Analysis of Flowrate and Water Quality of Major Tributaries for Implementation of TMDL in Sapgyo-reservoir Watershed at Chungcheongnam-do (충청남도 삽교호수계 수질오염총량관리제 시행을 위한 주요하천 유량 및 수질의 시.공간적 특성 분석)

  • Park, Sang-Hyun;Moon, Eun-Ho;Cho, Byung-Wook;Choi, Jeong-Ho;Jeong, Woo-Hyeok;Kim, Hong-Su;Yi, Sang-Jin;Kim, Young-Il
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.1
    • /
    • pp.107-113
    • /
    • 2013
  • The major tributaries in Sapgyo-reservoir watershed at Chungcheongnam-do were monitored for flowrate and water quality in order to analyze the characteristics of watershed and to prepare for implementation of total maximum daily load (TMDL). According to the analytical results of flowrate and water quality monitoring data of sixteen tributaries, the tributaries with the value of flowrate over $0.5m^3/s$ were 62.5% among the monitored tributaries and the value of flowrate in the Cheonancheon, Namwoncheon, Shinyangcheon except Gokgyocheon, Muhancheon, Sapgyocheon was relatively greater than the other tributaries. However, 37.5% of the tributaries were exceeded the water quality standards of Sapgyocheon sub-basin ($BOD_5$ 5 mg/L and/or below) and the concentration of water pollutants regardless of water quality parameters in Cheonancheon, Maegokcheon, Oncheoncheon including Gokgyocheon located in Gokgyocheon catchment were relatively higher than the other tributaries. The tributaries for improving the water quality, according to stream grouping method based on the results of flowrate and water quality monitoring data, were selected. In the Sapgyo-reservoir watershed, the tributaries for improving water quality, which has a large flowrate and a high concentration of water pollutants, were selected at Cheonancheon, Gokgyocheon, Maegokcheon, Namwoncheon, Oncheoncheon. The various water quality improving plans for those tributaries, in accordance with the reduction of point source pollution by population and livestock, should be established and implemented.