• Title/Summary/Keyword: Watershed Pollution

Search Result 526, Processing Time 0.038 seconds

Integrated Watershed Modeling Under Uncertainty (불확실성을 고려한 통합유역모델링)

  • Ham, Jong-Hwa;Yoon, Chun-Gyoung;Loucks, Daniel P.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.4
    • /
    • pp.13-22
    • /
    • 2007
  • The uncertainty in water quality model predictions is inevitably high due to natural stochasticity, model uncertainty, and parameter uncertainty. An integrated modeling system under uncertainty was described and demonstrated for use in watershed management and receiving-water quality prediction. A watershed model (HSPF), a receiving water quality model (WASP), and a wetland model (NPS-WET) were incorporated into an integrated modeling system (modified-BASINS) and applied to the Hwaseong Reservoir watershed. Reservoir water quality was predicted using the calibrated integrated modeling system, and the deterministic integrated modeling output was useful for estimating mean water quality given future watershed conditions and assessing the spatial distribution of pollutant loads. A Monte Carlo simulation was used to investigate the effect of various uncertainties on output prediction. Without pollution control measures in the watershed, the concentrations of total nitrogen (T-N) and total phosphorous (T-P) in the Hwaseong Reservoir, considering uncertainty, would be less than about 4.8 and 0.26 mg 4.8 and 0.26 mg $L^{-1}$, respectively, with 95% confidence. The effects of two watershed management practices, a wastewater treatment plant (WWTP) and a constructed wetland (WETLAND), were evaluated. The combined scenario (WWTP + WETLAND) was the most effective at improving reservoir water quality, bringing concentrations of T-N and T-P in the Hwaseong Reservoir to less than 3.54 and 0.15 mg ${L^{-1}$, 26.7 and 42.9% improvements, respectively, with 95% confidence. Overall, the Monte Carlo simulation in the integrated modeling system was practical for estimating uncertainty and reliable in water quality prediction. The approach described here may allow decisions to be made based on probability and level of risk, and its application is recommended.

Characteristics of Nonpoint Source Pollution and Relationship between Land Use and Nutrient Concentrations in the Han River Watershed (강우시 한강유역에서의 비점오염원 유출 특성과 토지이용도와의 관계)

  • Jung, Sungmin;Eum, Jaesung;Jang, Changwon;Choi, Youngsoon;Kim, Bomchul
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.2
    • /
    • pp.255-268
    • /
    • 2012
  • Nonpoint source pollution has become a concern for water quality in the Han River system, especially during the high runoff events during the monsoon season. The patterns in nonpoint source runoff the relationships with land use, rainfall intensity, and stream nutrients concentrations were surveyed in 19 streams in the Han River watershed. The results show that the magnitude of NPS inputs of nutrients and sediment in the Han River watershed are of a serious concern. In the South Han River watershed, event mean concentrations (EMC) for biochemical oxygen demand (BOD), suspended sediment (SS), dissolved organic carbon (DOC), dissolved total phosphorus (DTP), total nitrogen (TN) Nitrate ($NO_3$-N) and total phosphorus (TP) were $1.94mg{\cdot}L^{-1},\;251mg{\cdot}L^{-1},\;2.75mg{\cdot}L^{-1},\;0.076mg{\cdot}L^{-1},\;2.82mg{\cdot}L^{-1},\;2.40mg{\cdot}L^{-1}$ and $0.232mg{\cdot}L^{-1}$, respectively. In the North Han River watershed, EMCs for BOD, SS, DOC, DTP, TN, $NO_3$-N and TP were $1.34mg{\cdot}L^{-1},\;172mg{\cdot}L^{-1},\;2.63mg{\cdot}L^{-1},\;0.032mg{\cdot}L^{-1},\;1.97mg{\cdot}L^{-1},\;1.55mg{\cdot}L^{-1}$ and $0.148mg{\cdot}L^{-1}$, respectively. The specific export coefficients of nutrient and sediments were much higher than those of other reports. Our study also found that the proportion of agricultural field area was significantly correlated with the EMCs for nutrients. Therefore, efforts to reduce NPS loading must focus on agricultural practices in the watershed. The relationships between land use and nutrient and sediment export found in this study can be used to derive estimates of runoff coefficients for agricultural field and as input data for modeling works and to develop total maximum daily load and best management practices in the Han River watershed.

Water Quality Management System at Mok-hyun Stream Watershed Using RS and GIS

  • Lee, In-Soo;Lee, Kyoo-seock
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.63-69
    • /
    • 1999
  • The purpose of this study is to develop Water Quality Management System(WQMS), which performs calculating pollutant discharge and forecasting water quality with water pollution model. Operational water quality management requires not only controlling pollutants but acquiring and managing exact information. A GIS software, ArcView was used to enter or edit geographic data and attribute data, and MapObject was used to customize the user interface. PCI, a remote sensing software, was used for deriving land cover classification from 20 m resolution SPOT data by image processing. WQMS has two subsystems, Database Subsystem and Modelling subsystem. Database subsystem consisted of watershed data from digital map, remote sensing data, government reports, census data and so on. Modelling subsystem consisted of NSPLM(NonStorm Pollutant Load Model)-SPLM(Storm Pollutant Load Model). It calculates the amount of pollutant and predicts water quality. This two subsystem was connected through graphic display module. This system has been calibrated and verified by applying to Mokhyun stream watershed.

  • PDF

Application of GWLF Model to Predict Watershed Pollutant Loadings (오염부하량 산정을 위한 GWLF 모형의 적용)

  • Jang, Jung-Seok;Lee, Nam-Ho
    • Journal of Korean Society of Rural Planning
    • /
    • v.7 no.1 s.13
    • /
    • pp.77-88
    • /
    • 2001
  • In order to evaluate the applicability of GWLF model which can efficiently estimate non-point and point source pollutant loadings in rural watershed including urban district, the model was applied to an experimental watershed. The model was calibrated using observed data such as daily runoffs, sediment yields, T-N, and T-P. Simulated daily runoffs and sediment yields by the model using calibrated parameters were in food agreement with the observed data. There were difference between the simulated and observed nutrient loading which was considered resonable. The simulated results by the model showed that T-N, T-P and sediment yields were dependent on the amount of stream runoff discharge and land use. GWLF model is believed to applicable to estimate amount of pollutant loading of non-point source pollution for the water qualify control of agricultural watersheds.

  • PDF

Loading characteristics of Total Phosphorus and Total Nitrogen from the Juam Lake Watershed (주암호 유역의 총인과 총질소 부하 특성)

  • Yoon, Kwang-Sik;Han, Kuk-Heon;Choi, Soo-Myung;Jung, Jae-Woon;Cho, Jae-Young
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.631-634
    • /
    • 2003
  • A subwatershed within the Lake Juam was monitored to identify hydrologic and water quality characteristics. Rainfall record was collected and flow rate measurement and water quality sampling were conducted periodically at the watershed outlet. Water quality of storm period was worse than that of base flow period. Nutrient loading from the watershed was governed by only a few storms during study period. Nonpoint source pollution was identified major problem for water quality management in Juam Lake.

  • PDF

An Analysis on the First Flush Phenomenon by Stormwater Runoff in Eutrophic Lake Watershed (부영양상태 호수유역의 강우유출수에 의한 초기세척효과 분석)

  • Cho, Jae-Heon;Seo, Hyung-Jun
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.5
    • /
    • pp.341-350
    • /
    • 2007
  • Lake Youngrang is a lagoon whose effluent flows into the East Sea. Because two resort towns and two golf courses are situated at the lake basin, many tourists visit this area. Stormwater runoff surveys were carried out for the eight storm events from 2004 to 2005 in the eutrophic lake watershed to give a basic data for the diffuse pollution control of the lake. Dimensionless mass-volume curves indicating the distribution of pollutant mass vs. volume were used to analyze the first flush phenomenon. The mass-volume curves were fitted with a power function and polynomial equation curves. The regression analysis showed that the polynomial equation curves were better than the power function in representing the tendency of the first flush, and second degree polynomial equation curves indicated the strength of the first flush effectively.

Relationship between rural watershed characteristics and stream water quality (농촌유역특성과 하천수질과의 관계)

  • 홍성구;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.3
    • /
    • pp.56-65
    • /
    • 2001
  • In interpreting stream water quality data, scientific or statistical mehtods should be employed. Classical parametric statistical methods may not be adopted in analyzing water quality data, due to the violation of normality. In this study, nonparametric statistical methods, such as Kruskal-Wallis test and Mann-Whitney test, were used in comparing water quality data from several monitoring stations. Water quality data used are those collected Bokha watershed, located in Ichon-city, Kyonggi province. Based on the test results, domestic sewage is the major pollution source. A couple of sub-watersheds with a large number of livestock do not show significant differences in water quality parameters. It should be noted that comparison of mean values of water quality parameters is difficult to relate water quality with watershed characteristics. The results also indicate that livestock farming does not significantly affect the water quality.

  • PDF

Reduction of Agricultural Non-point Pollution Source by Scenarios of Best Management Practices on Cropping System Alternatives of Main Upland Crop in Saemangeum Watershed (새만금 유역 주요 밭작물 작부체계 최적관리기법 시나리오별 농업비점오염원 저감)

  • Son, Jae Gwon;Lee, Gyeong Ae;Yoo, Dong Su;Cho, JaeYoung
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.1
    • /
    • pp.95-101
    • /
    • 2014
  • Nonpoint pollution sources from agricultural activities are a major cause of water quality impairment. A nutrient management program utilizes farm practices that maintain efficient crop production systems and control agricultural nonpoint pollution sources. The objectives of present study were to identify appropriate best management practices (BMPs) according to changes of cropping system of main upland crop for reducing AGNPs loadings and to simulate the effects of the application of the several BMPs scenarios in Saemangeum watershed. The selected BMP scenarios were: 1) to convert naked barley and hulled barley to hairy vetch or chinese milk vetch, 2) to convert red pepper to soybean crop, and 3) to combine two scenarios, converting naked barley and hulled barley to hairy vetch or chinese milk vetch + converting red pepper to soybean crop. As a result of BMPs application, the crop requirement of nitrogen and phosphorus for upland crop reduced nitrogen by 41% and phosphorus by 47% in scenario 1, whereas scenario 2 reduced nitrogen by 30% and phosphorus by 23%. Overall, scenario 3 reduced nitrogen by 72% and phosphorus by 70% in agricultural non-point pollution sources associated with chemical fertilizer and livestock manure in Saemangeum watershed.

Analysis of Distribution Characteristics of Flowrate and Water Quality in Tributary at Chungcheongnam-do (충청남도 지류하천의 유량 및 수질 분포특성 분석)

  • Park, Sang-Hyun;Moon, Eun-Ho;Choi, Jeong-Ho;Cho, Byung-Wook;Kim, Hong-Su;Jeong, Woo-Hyeok;Yi, Sang-Jin;Kim, Young-Il
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.10
    • /
    • pp.739-747
    • /
    • 2011
  • The major 81 tributaries in Chungcheongnam-do were monitored for flowrate and water quality in order to understand the characteristics of the watershed and to select the tributary catchment for improving water quality. The value of flowrate in the tributaries at Nonsancheon catchment at the Geum-River watershed and Gokgyocheon, Muhancheon, Sapgyocheon at the Sapgyo-Reservoir watershed, which is located in the southern and northern area in Chungcheongnam-do, was relatively greater than the other watersheds. The concentration of water pollutants regardless of water quality parameters in Nonsancheon catchment at the Geum-River watershed, Gokgyocheon catchment at the Sapgyo-Reservoir watershed and the Anseongcheon watershed, which have a dense source of pollution, were higher than the other watersheds. However, 64 percent of the tributaries at the Geum-River watershed, 45 percent of tributaries at the Sapgyo-Reservoir watershed, 26 percent of tributaries at the Geum-River watershed all satisfied the Class II regulations in the Framework Act on Environment Policy, but all of the tributaries located in the Anseongcheon watershed exceeded the Class II regulations. Therefore, the policy for improving the water quality of the tributary in Chungcheongnam-do should be established in the following order: Anseongcheon, Seohae, Sapgyo-Reservoir watersheds. Consequently, the tributary catchment for improving water quality, which has a large flowrate and a high concentration of water pollutants, was selected at Ganggyeongcheon, Geumcheon, Nonsancheon, Seokseongcheon, Seungcheoncheon, Jeongancheon, Jeungsancheon (so far Geum-River watershed), Gokgyocheon, Namwoncheon, Maegokcheon, Muhancheon, Sapgyocheon Oncheoncheon, Cheonancheon (so far Sapgyo-Reservoir watershed), Gwangcheoncheon, Dangjincheon, Daecheoncheon, Dodangcheon, Waryongcheon, Cheongjicheon, Pangyocheon, Heungincheon (so far Seohae watershed), Dunpocheon, Seonghwancheon, Ipjangcheon (so far Anseongcheon watershed). The plans as installation of environmental facilities to reduce the source of pollution for improving the water quality of these tributary catchments should be urgently established and implemented.

Validity of Fecal Pollution Source Tracking using FC/FS Ratio (FC/FS 비율에 의한 분변오염원의 출처파악의 유효성)

  • Park, Ji-Eun;Lee, Young-Ok
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.28-34
    • /
    • 2010
  • This study was conducted to assess the validity of fecal coliforms to fecal streptococci ratio (FC/FS) for distinguishing the human from animal origin of fecal pollution in surface water. FC/FS ratio determined in effluent from municipal wastewater and human feces treatment plant (WWTP) and in downstream close to discharge of human feces was above 4 which indicates human origin. However FC/FS ratios determined seasonally in other water zones of the Nakdong River, even in the same sampling site, varied differently (above 4 or less than 0.7) due to different survival time of FC and FS and other environmental factors such as rainfall in watershed. Compared to other season, FC/FS ratios in winter were much lower regardless of the origin. It is concluded that the FC/FS ratio determined in surface water is not always valid for determining the origin of fecal pollution.