DOI QR코드

DOI QR Code

Reduction of Agricultural Non-point Pollution Source by Scenarios of Best Management Practices on Cropping System Alternatives of Main Upland Crop in Saemangeum Watershed

새만금 유역 주요 밭작물 작부체계 최적관리기법 시나리오별 농업비점오염원 저감

  • Son, Jae Gwon (College of Agriculture & Life Science, Chonbuk National University) ;
  • Lee, Gyeong Ae (College of Agriculture & Life Science, Chonbuk National University) ;
  • Yoo, Dong Su (College of Agriculture & Life Science, Chonbuk National University) ;
  • Cho, JaeYoung (College of Agriculture & Life Science, Chonbuk National University)
  • Received : 2013.09.02
  • Accepted : 2013.10.04
  • Published : 2014.03.31

Abstract

Nonpoint pollution sources from agricultural activities are a major cause of water quality impairment. A nutrient management program utilizes farm practices that maintain efficient crop production systems and control agricultural nonpoint pollution sources. The objectives of present study were to identify appropriate best management practices (BMPs) according to changes of cropping system of main upland crop for reducing AGNPs loadings and to simulate the effects of the application of the several BMPs scenarios in Saemangeum watershed. The selected BMP scenarios were: 1) to convert naked barley and hulled barley to hairy vetch or chinese milk vetch, 2) to convert red pepper to soybean crop, and 3) to combine two scenarios, converting naked barley and hulled barley to hairy vetch or chinese milk vetch + converting red pepper to soybean crop. As a result of BMPs application, the crop requirement of nitrogen and phosphorus for upland crop reduced nitrogen by 41% and phosphorus by 47% in scenario 1, whereas scenario 2 reduced nitrogen by 30% and phosphorus by 23%. Overall, scenario 3 reduced nitrogen by 72% and phosphorus by 70% in agricultural non-point pollution sources associated with chemical fertilizer and livestock manure in Saemangeum watershed.

새만금 유역내 밭작물 재배 농경지의 작부체계와 관련된 최적관리기법을 적용하여 각각의 시나리오별로 농업비점오염원의 저감효과를 분석하였다. 또한 새만금 유역내 동진강 수계와 만경강 수계를 대상으로 행정구역별 작물양분의 투입량 실태분석과 향후 변화 추이에 대한 평가를 수행하였다. 새만금 유역 만경강 수계에서 2012년 기준으로 2020년에는 질소질비료 18%, 인산질비료 22%가 감소하는 추세였으며, 동진강 수계에서는 질소질비료 30%, 인산질비료 19%가 감소할 것으로 평가되었다. 반면, 퇴비의 경우에는 만경강 수계에서는 17%, 동진강 수계에서는 37% 정도 사용량이 증가할 것으로 추정되었다. 새만금 유역내 밭작물의 작부체계 변경과 관련된 최적관리기법 시나리오 가운데 Scenario 1 (동계작물 겉보리와 쌀보리를 경관 녹비작물인 헤어리벳치 또는 자운영으로 작부체계를 변경한 경우) 적용시 질소 41%, 인산 47%의 작물양분 투입량을 감소시키는 결과를 초래할 수 있는 것으로 나타났으며, Scenario 2 (화학비료 시비량이 많은 고추작물을 질소고정능력이 높은 콩작물로 작부체계를 변경한 경우) 적용시 질소 30%, 인산 23%의 작물양분 투입량을 감소시키는 결과를 초래할 수 있는 것으로 나타났으며, Scenario 3 (시나리오 1과 시나리오 2의 통합) 적용시 질소 72%, 인산 70%의 작물양분 투입량을 감소시키는 결과를 초래할 수 있는 것으로 평가되었다. 새만금 유역에서 담수호 수질보전을 위한 유역관리기법 개발시 작물양분요구량이 높은 작물의 재배를 최소화하고 양분배출형 작부체계가 아닌 양분흡수형 작부체계로의 전환을 통한 최적관리기법 모델 개발이 필요할 것으로 판단된다.

Keywords

References

  1. Allan OE, Rhoades D, Smith SJ, and Menzel RG (1980) Fertilizer nutrient losses from rangeland watersheds in central Oklahoma. J Environ Qual 9, 81-6.
  2. Cho JY, Son JG, Choi JK, Song CH, and Chung BY (2008) Surface and subsurface losses of N and P from salt-affected rice paddy fields of Saemangeum reclaimed land in South Korea. Paddy Water Environ 6, 211-9. https://doi.org/10.1007/s10333-007-0082-x
  3. Griffin R and Bromley D (1982) Agricultural runoff as a nonpoint externality. Am J Agr Econ 64, 547-52. https://doi.org/10.2307/1240648
  4. Im SJ, Kim SM, and Kang MS (2009) A Study on the nonpoint source pollution management guideline for golf course construction. J Agr Life Sci 43, 55-62.
  5. Kwon TW, Kwon SH, Lee CH, and Hong EH (2001) The feasibility study on the establishment of a world soybean center. Korea Soybean Digest 18, 1-25.
  6. Lee CG (2007) Forecasting of water quality in Wang-Suk river watershed using total waste load reduction scenarios. MS Thesis, Hanyang University, Korea.
  7. Lee EJ, Kim HK, and Park SW (2007) Assessing impact of non-point source pollution by management alternatives on arable land using AGNPS model. J Agr Life Sci 41, 55-61.
  8. Malmer A (1996) Hydrological effects and nutrient losses of forest plantation establishment on tropical rainforest land in Sabah, Malaysia. J Hydrol 174, 129-49. https://doi.org/10.1016/0022-1694(95)02757-2
  9. Ministry of Agriculture and Forestry (2007) Development of control and management of non-point source pollution in Saemangeum watersheds. Korea.
  10. Mostaghimi S, Park SW, Cooke RA, and Wang SY (1997) Assessment of management alternatives on a small agricultural watershed. Water Resour 31, 1867-78.
  11. National Research Council (1993) Prevention of water pollution by agriculture and related activities. Rome.
  12. NIAST (1999) Standard application of fertilizer for Crops. National Institute of Agricultural Science and Technology, Korea.
  13. OECD (1996) Water pollution by fertilizers and pesticides. Organization for Economic Co-operation and Development. Paris.
  14. Seo JH, Park JY, and Song DY (2005) Effect of cover crop hairy vetch on prevention of soil erosion and reduction of nitrogen fertilization in sloped upland. Korean J Soil Sci Fert 38, 134-41.
  15. Yoon CG, Ham JH, and Jeon JH (2003) Mass balance analysis in Korean paddy rice culture. Paddy Water Environ 1, 99-106 https://doi.org/10.1007/s10333-003-0018-z
  16. Zulu G, Toyota M, and Misawa SI (1996) Characteristics of water reuse and its effects on paddy irrigation system water balance and the rice land ecosystem. Agr Water Manage 31, 269-83. https://doi.org/10.1016/0378-3774(95)01233-8

Cited by

  1. 녹비작물 토양환원이 백수오 생육 및 품질에 미치는 영향 vol.25, pp.2, 2017, https://doi.org/10.7783/kjmcs.2017.25.2.115