• Title/Summary/Keyword: Waterhammer

Search Result 32, Processing Time 0.036 seconds

Waterhammer for the Intake Pumping Station with the Pump Control Valve (펌프제어밸브를 사용한 취수펌프장에서의 수격현상)

  • Kim, Kyung-Yup;Oh, Sang-Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.4 s.13
    • /
    • pp.16-21
    • /
    • 2001
  • The field tests on the waterhammer were carried out for PalDang intake pumping station of the metropolitan water supply 5th stage project. The pumping station was equipped with the pump control valve as the main surge suppression device and the surge relief valve as auxiliary. However, the pump control valve had not been early controlled in the planned closing mode, and the slamming occurred to the valve which abruptly closed during the large reverse flow. Because the pressure wave caused by the pump failure was superposed on the slam surge, the upsurge increased so extremely that the shaft of the valve was damaged. It was desirable that the surge relief valve was installed in the pumping station or near the pump exit for the delay of response. After reforming the oil dashpot of the pump control valve, the sliming disappeared and the measured pressure was in fairly good agreement with the results of simulation. In case of three pumps for ${\phi}2,600$ pipeline being simultaneously tripped, the pressure head in the pumping station increased to 95.6 m, and the upsurge caused by the emergency stop of four pumps for ${\phi}2,800$ pipeline was 89.6m. We concluded that the pumping station acquired the safety and reliability for the pressure surge.

  • PDF

Engineering Validation for Propellant Isolation Assembly of Korea Pathfinder Lunar Orbiter Part I: Numerical Analysis (시험용 달 궤도선의 추진제 공급부 설계 검증 Part I: 수치해석)

  • Kim, Sun-Hoon;Kim, Su-Kyum
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.3
    • /
    • pp.96-103
    • /
    • 2019
  • In this study, a comparison was conducted to verify the propellant isolation assembly of the Korea Pathfinder Lunar Orbiter (KPLO). An engineering validation model (EVM) is being developed to simulate the flow of the flight model. Three factors were selected for comparison: the total pressure drop during propellant isolation assembly, the waterhammer by driving thruster valve, and the orifice set up for flow control and damping the waterhammer. The analysis results are compared with EVM test results. In the future, backup data to confirm the design will be established.

Analysis of Water Surface Oscillation in the Surge Tank Due to the Variation of Water Level (수위변화에 따른 조압수조 내 수면진동에 대한 분석)

  • Jun, Kye-Won;Lee, Ho-Jin;Park, Jae-Sung;An, Sang-Do;Yoon, Young-Ho
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.441-444
    • /
    • 2007
  • Surge tank generally are used near the downstream end of tunnels of penstocks to reduce change in pressure caused by waterhammer resulting from load changes on the turbines. In this paper, the surge tank with chamber is selected to analyze water surface oscillation. the governing equation are derived using the law of conservation of mass and momentum. the water surface oscillation in the surge tank are computed using governing equation. In the case of upsurging, water surface oscillation is damped gradually and in the case of downsurging, it is damped rapidly.

  • PDF

Waterhammer Analysis for Low Head Irrigation Pipeline Systems (저압 농용 관수로 시스템의 수격압 해석)

  • 강민구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.5
    • /
    • pp.77-85
    • /
    • 1999
  • Irrigation pipeline systems have been recently adopted for irrigation purposes, which was thought to improve irrigation efficiencies. However, if hydraulic characteristics are not evaluated in designing , overpressure due to waterhammer may occur and result in serious problems. Therefore, in this study a model was formulated to simulate unsteady motion of water in a pipeline resulting from valve closure, the applicability of the model owas tested with fiedld data, and the results showed good agreement in maximum piezometric head. Also, simulated maximum piezometric head was compared with designed piezometric head computed by empirical method, and maximum piezometric head in a pipeline resulting from valve closure was simulated and analyzed with varing surge tank's position and diameter.

  • PDF

Transient Analysis of Pipeline System Considering Unsteady Friction Models (다양한 부정류 마찰항을 고려한 관망 천이류 모의와 실험연구)

  • Jang, Il;Kim, Sang Hyun;Kim, Ji Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.6
    • /
    • pp.657-664
    • /
    • 2008
  • This research compared several unsteady friction models for transient analysis of pipeline system. Unsteady friction is an important factor for accurate simulation of hydraulic transient. Steady friction, quasi-steady friction, Zielke's model and two versions of Brunone model were compared with measurement data of identical pipeline conditions. This study showed that the existing simple steady friction model can be useful for the safer design of pipeline system due to its overestimation of waterhammer, but introduction of more elaborate models are required for advanced analysis such as inverse transient analysis of friction or leakage and the preliminary analysis of water quality prediction of water distribution system.

Development of Discretized Combined Unsteady Friction Model for Pipeline Systems (관수로 합성 부정류 차분화 마찰모형의 개발)

  • Choi, Rak-Won;Kim, Sang-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.5
    • /
    • pp.455-464
    • /
    • 2012
  • In this study, a combined unsteady friction model has been developed to simulate the waterhammer phenomenon for the pipeline system. The method of characteristics has been employed as the modeling platform for the integration of the acceleration based model and the frequency dependant model for unsteady friction. Both Zielke's model and Ramos model were also compared with pressure measurements of a pilot plant pipeline system. In order to validate the modeling approach, a pipeline system equipped with the high frequency pressure data acquisition system was fabricated. The time series of pressure, introduced by a sudden valve closure, were obtained for two Reynolds numbers. A trial and error method was used to calibrate parameters for unsteady friction model. The comparison between different unsteady friction contributions in pressure variation provided the comprehensive understanding in the pressure damping mechanism of waterhammer. The proper evaluation of unsteady friction impact is a critical factor for accurate simulation of hydraulic transient.

Case Study of Repair Works on Surge Suppression Device for Booster Pumping Station (가압펌프장의 수격완화설비에 대한 보수·보강 사례)

  • Kim, Sang-gyun;Lee, Dong-keun;Lee, Gye-bok;Kim, Kyung-yup
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.4 s.31
    • /
    • pp.20-26
    • /
    • 2005
  • When the pumps are started or stopped for the operation or tripped due to the power failure, the hydraulic transients occur as a result of the sudden change in velocity. The field tests on the waterhammer were carried out for Pangyo booster pumping station in which had six booster pumps and two in-line pumps with the motor of output 1,700 kW, respectively. The booster pumping station was equipped with the pump control valve as the main surge suppression device, and the surge relief valve as auxiliary one. But the pump control valve had not early controlled in the planned closing mode, the slamming occurred to the valve of which abruptly closed during the large reverse flow. Because the positive pressure wave caused by the pump failure was superposed on the slam surge, the upsurge increased so extremely that the pump control valve was damaged. After the air chambers were additionally installed in the booster pumping station, it was preyed that the water supply system acquire the safety and reliability on the pressure surge.

A Study of Measuring Vibration for Reproducing Waterhammer of Plant Equipment (플랜트 기자재 수충격 진동재현을 위한 진동측정에 관한 연구)

  • OH, Jung-Soo;Cho, Sueng-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.145-150
    • /
    • 2017
  • In this study, among the various types of plant equipment, valves, which are susceptible to water hammer, were selected as the diagnosis target. In order to effectively measure the vibration, an accelerometer was adapted for use in this difficult environment. The results showed that the maximum peak-to-peak vibration displacement caused by the action of water hammer on the valve was 21.40 mm, which would affect the structural stability of the valve and pipe. Meanwhile, the measured data was applied to the HIL simulator to verify the reproduction of the vibration. In the future, field data will be applied to the HIL simulator for the purpose of assessing the fatigue, durability and expected residual life of the plant equipment.