The frequency of disasters is increasing due to global climate change, and unusual heavy rains and rainy seasons are occurring in Korea. Periodic monitoring and rapid detection are important because these weather conditions can lead to drought and flooding, causing secondary damage. Although research using optical images is continuously being conducted to determine the waterbody, there is a limitation in that it is difficult to detect due to the influence of clouds in order to detect floods that accompany heavy rain. Therefore, there is a need for research using synthetic aperture radar (SAR) that can be observed regardless of day or night in all weather. In this study, using Sentinel-1 SAR images that can be collected in near-real time as open data, the UNet model among deep learning algorithms that have recently been used in various fields was applied. In previous studies, waterbody detection studies using SAR images and deep learning algorithms are being conducted, but only a small number of studies have been conducted in Korea. In this study, to determine the applicability of deep learning of SAR images, UNet and the existing algorithm thresholding method were compared, and five indices and Sentinel-2 normalized difference water index (NDWI) were evaluated. As a result of evaluating the accuracy with intersect of union (IoU), it was confirmed that UNet has high accuracy with 0.894 for UNet and 0.699 for threshold method. Through this study, the applicability of deep learning-based SAR images was confirmed, and if high-resolution SAR images and deep learning algorithms are applied, it is expected that periodic and accurate waterbody change detection will be possible in Korea.
Waterbody change detection using satellite images has recently been carried out in various regions in South Korea, utilizing multiple types of sensors. This study utilizes optical satellite images from Landsat and Sentinel-2 based on Google Earth Engine (GEE) to analyze long-term surface water area changes in four monitored small and medium-sized water supply dams and agricultural reservoirs in South Korea. The analysis covers 19 years for the water supply dams and 27 years for the agricultural reservoirs. By employing image analysis methods such as normalized difference water index, Canny Edge Detection, and Otsu'sthresholding for waterbody detection, the study reliably extracted water surface areas, allowing for clear annual changes in waterbodies to be observed. When comparing the time series data of surface water areas derived from satellite images to actual measured water levels, a high correlation coefficient above 0.8 was found for the water supply dams. However, the agricultural reservoirs showed a lower correlation, between 0.5 and 0.7, attributed to the characteristics of agricultural reservoir management and the inadequacy of comparative data rather than the satellite image analysis itself. The analysis also revealed several inconsistencies in the results for smaller reservoirs, indicating the need for further studies on these reservoirs. The changes in surface water area, calculated using GEE, provide valuable spatial information on waterbody changes across the entire watershed, which cannot be identified solely by measuring water levels. This highlights the usefulness of efficiently processing extensive long-term satellite imagery data. Based on these findings, it is expected that future research could apply this method to a larger number of dam reservoirs with varying sizes,shapes, and monitoring statuses, potentially yielding additional insights into different reservoir groups.
Yoon, Sung Wan;Park, Gwan Yeong;Chung, Se Woong;Kang, Boo Sik
Journal of Korean Society on Water Environment
/
v.30
no.5
/
pp.491-502
/
2014
As meteorology is the driving force for lake thermodynamics and mixing processes, the effects of climate change on the physical limnology and associated ecosystem are emerging issues. The potential impacts of climate change on the physical features of a reservoir include the heat budget and thermodynamic balance across the air-water interface, formation and stability of the thermal stratification, and the timing of turn over. In addition, the changed physical processes may result in alteration of materials and energy flow because the biogeochemical processes of a stratified waterbody is strongly associated with the thermal stability. In this study, a novel modeling framework that consists of an artificial neural network (ANN), a watershed model (SWAT), a reservoir operation model(HEC-ResSim) and a hydrodynamic and water quality model (CE-QUAL-W2) is developed for projecting the effects of climate change on the reservoir water temperature and thermal stability. The results showed that increasing air temperature will cause higher epilimnion temperatures, earlier and more persistent thermal stratification, and increased thermal stability in the future. The Schmidt stability index used to evaluate the stratification strength showed tendency to increase, implying that the climate change may have considerable impacts on the water quality and ecosystem through changing the vertical mixing characteristics of the reservoir.
Journal of the Korean Society of Environmental Restoration Technology
/
v.17
no.1
/
pp.135-146
/
2014
The improvement of adaptation capability against heat island (ACHI) by greening buildings is considered as an important measure to cope with a climate change. This study aimed to select the most appropriate zones for green roof initiative in case study sites, Bucheon, Anyang, and Suwon Cities and to investigate the characteristics of buildings for greening to improve ACHI. Relative ACHI for each lot was estimated from 0 to -9, assuming that it decreases with the distance from green space and waterbody. Low adaptation capabilities were mostly shown in the old urban blocks with dense low-rise buildings and lack of green space. Three blocks with the lowest ACHIs were chosen as a green roof initiative zone in each city. They are largely residential areas including low-rise buildings such as single, multi-household houses, townhouses, 5 or lower story apartments and few are industrial areas crowded with small factory buildings. The areas of building roof available for greening are 8.8% within the selected zones in Bucheon City, 5.3% in Anyang City, and 4.9% in Suwon City. As it were, 25.2~41.7% of the roof top areas are available for greening in these zones. It means that roof top areas of $25,000{\sim}120,000m^2$ can be used for greening within the selected zones of $0.64{\sim}1.65km^2$ to improve ACHI. The approach and results of the study are significant to provide a logical basis and information on location, scale, effect, and target figure of greening as a measure to cope with climate change.
In a deep lake and reservoir, thermal stratification is of great importance for characteristics of hydrodynamic mixing of the waterbody, and thereby influencesvertical distribution of dissolved oxygen, substances, nutrients, and the phytoplankton community. The purpose of this study, was to project the effect of a future climate change scenario on water temperature, stratification strength, and thermal stability in the Soyanggang Reservoir in the Han River basin of South Korea, using a suite of mathematical models; SWAT, HEC-ResSim, and CE-QUAL-W2(W2). W2 was calibrated with historical data observed 2005-2015. Using climate data generated by HadGEM2-AO with the RCP 4.5 scenario, SWAT predicted daily reservoir inflow 2016-2070, and HEC-ResSim simulated changes in reservoir discharge and water level, based on inflow and reservoir operation rules. Then, W2 was applied, to predict long-term continuous changes of water temperature, in the reservoir. As a result, the upper layer (5 m below water surface) and lower layer (5 m above bottom) water temperatures, were projected to rise $0.0191^{\circ}C/year$(p<0.05) and $0.008^{\circ}C/year$(p<0.05), respectively, in response to projected atmospheric temperature rise rate of $0.0279^{\circ}C/year$(p<0.05). Additionally, with increase of future temperature, stratification strength of the reservoir is projected to be stronger, and the number of the days when temperature difference of the upper layer and the lower layer becomes greater than $5^{\circ}C$, also increase. Increase of water temperature on the surface of the reservoir, affected seasonal growth rate of the algae community. In particular, the growth rate of cyanobacteria increased in spring, and early summer.
Agricultural water occupies 48% of water demand, and management of agricultural reservoirs is essential for water resources management within agricultural basins. For more efficient use of agricultural water, monitoring the distribution of water resources in agricultural reservoirs and agricultural basins is required. Therefore, in this study, three threshold determination methods (i.e., fixed threshold, Otsu threshold, Kittler-Illingworth (KI) threshold) were compared to detect terrestrial water bodies using Sentinel-1 images for 3 years from 2018 to 2020. The purpose of this study was to evaluate methods for determining threshold values to more accurately estimate the reservoir area. In addition, by analyzing the relationship between the water surface and water storage at the Edong, Gosam, and Giheung reservoirs, water storage based on the SAR image was estimated and validated with observations. The thresholding method for detecting a waterbody was found to be the most accurate in the case of the KI threshold, and the water storage estimated by the KI threshold indicated a very high agreement (r = 0.9235, KGE' = 0.8691). Although the seasonal error characteristics were not observed, the problem of underestimation at high water levels may occur; the relationship between the water surface and the water storage could change rapidly. Therefore, it is necessary to understand the relationship between the water surface area and water storage through ground observation data for a more accurate estimation of water storage. If the use of SAR data through water resources satellites becomes possible in the future, based on the results of this study, it is judged that it will be beneficial for monitoring water storage and managing drought.
Due to unpredictable climate change, the frequency of occurrence of water-related disasters and the scale of damage are also continuously increasing. In terms of disaster management, it is essential to identify the damaged area in a wide area and monitor for mid-term and long-term forecasting. In the field of water disasters, research on remote sensing technology using Synthetic Aperture Radar (SAR) satellite images for wide-area monitoring is being actively conducted. Time-series analysis for monitoring requires a complex preprocessing process that collects a large amount of images and considers the noisy radar characteristics, and for this, a considerable amount of time is required. With the recent development of cloud computing technology, many platforms capable of performing spatiotemporal analysis using satellite big data have been proposed. Google Earth Engine (GEE)is a representative platform that provides about 600 satellite data for free and enables semi real time space time analysis based on the analysis preparation data of satellite images. Therefore, in this study, immediate water disaster damage detection and mid to long term time series observation studies were conducted using GEE. Through the Otsu technique, which is mainly used for change detection, changes in river width and flood area due to river flooding were confirmed, centered on the torrential rains that occurred in 2020. In addition, in terms of disaster management, the change trend of the time series waterbody from 2018 to 2022 was confirmed. The short processing time through javascript based coding, and the strength of spatiotemporal analysis and result expression, are expected to enable use in the field of water disasters. In addition, it is expected that the field of application will be expanded through connection with various satellite bigdata in the future.
KSCE Journal of Civil and Environmental Engineering Research
/
v.35
no.5
/
pp.1039-1049
/
2015
The inflow estimation at large multipurpose dam reservoir is carried out by considering the water balance among the discharge, the storage change during unit time interval obtained from the observed water level near dam structure and area-volume curve. This method can be ideal for level pool reservoir but include potential errors when the inflow is influenced by the water level slope due to backwater effects from upstream flood inflows and strong wind induced by typhoon. In addition, the other uncertainties arisen from the storage reduction due to sedimentation after the dam construction and water level noise due to mechanical vibration transmitted from the electric power generator. These uncertainties impedes the accurate hydraulic inflow measurement requiring exquisite hydrometric data arrangement for reservoir waterbody. In this study, the distributed hydrologic model using UBC-3P boundary setting was applied and its feasibility was evaluated. Finally, the modeling performance has been verified since the calculated determination coefficient has been in between 0.96 to 0.99 after comparing with observed peak inflow and total inflow at Namgang dam reservoir.
Agricultural reservoirs are an important water resource nationwide and vulnerable to abnormal climate effects such as drought caused by climate change. Therefore, it is required enhanced management for appropriate operation. Although water-level tracking is necessary through continuous monitoring, it is challenging to measure and observe on-site due to practical problems. This study presents an objective comparison between multiple AI models for water-body extraction using radar images that have the advantages of wide coverage, and frequent revisit time. The proposed methods in this study used Sentinel-1 Synthetic Aperture Radar (SAR) images, and unlike common methods of water extraction based on optical images, they are suitable for long-term monitoring because they are less affected by the weather conditions. We built four AI models such as Support Vector Machine (SVM), Random Forest (RF), Artificial Neural Network (ANN), and Automated Machine Learning (AutoML) using drone images, sentinel-1 SAR and DSM data. There are total of 22 reservoirs of less than 1 million tons for the study, including small and medium-sized reservoirs with an effective storage capacity of less than 300,000 tons. 45 images from 22 reservoirs were used for model training and verification, and the results show that the AutoML model was 0.01 to 0.03 better in the water Intersection over Union (IoU) than the other three models, with Accuracy=0.92 and mIoU=0.81 in a test. As the result, AutoML performed as well as the classical machine learning methods and it is expected that the applicability of the water-body extraction technique by AutoML to monitor reservoirs automatically.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.