DOI QR코드

DOI QR Code

Projection of water temperature and stratification strength with climate change in Soyanggang Reservoir in South Korea

기후변화에 따른 소양호 수온 및 성층강도 변화 예측

  • Yun, Yeojeong (Department of Environmental Engineering, Chungbuk National University) ;
  • Park, Hyungseok (Department of Environmental Engineering, Chungbuk National University) ;
  • Chung, Sewoong (Department of Environmental Engineering, Chungbuk National University)
  • Received : 2019.02.26
  • Accepted : 2019.05.02
  • Published : 2019.05.30

Abstract

In a deep lake and reservoir, thermal stratification is of great importance for characteristics of hydrodynamic mixing of the waterbody, and thereby influencesvertical distribution of dissolved oxygen, substances, nutrients, and the phytoplankton community. The purpose of this study, was to project the effect of a future climate change scenario on water temperature, stratification strength, and thermal stability in the Soyanggang Reservoir in the Han River basin of South Korea, using a suite of mathematical models; SWAT, HEC-ResSim, and CE-QUAL-W2(W2). W2 was calibrated with historical data observed 2005-2015. Using climate data generated by HadGEM2-AO with the RCP 4.5 scenario, SWAT predicted daily reservoir inflow 2016-2070, and HEC-ResSim simulated changes in reservoir discharge and water level, based on inflow and reservoir operation rules. Then, W2 was applied, to predict long-term continuous changes of water temperature, in the reservoir. As a result, the upper layer (5 m below water surface) and lower layer (5 m above bottom) water temperatures, were projected to rise $0.0191^{\circ}C/year$(p<0.05) and $0.008^{\circ}C/year$(p<0.05), respectively, in response to projected atmospheric temperature rise rate of $0.0279^{\circ}C/year$(p<0.05). Additionally, with increase of future temperature, stratification strength of the reservoir is projected to be stronger, and the number of the days when temperature difference of the upper layer and the lower layer becomes greater than $5^{\circ}C$, also increase. Increase of water temperature on the surface of the reservoir, affected seasonal growth rate of the algae community. In particular, the growth rate of cyanobacteria increased in spring, and early summer.

Keywords

SJBJB8_2019_v35n3_234_f0001.png 이미지

Fig. 1. Locations of the study area and research point

SJBJB8_2019_v35n3_234_f0002.png 이미지

Fig. 2. Flowchart of the modeling processes, used in this study.

SJBJB8_2019_v35n3_234_f0003.png 이미지

Fig. 3. Comparison of simulated reservoir water level and capacity curve with observed one.

SJBJB8_2019_v35n3_234_f0004.png 이미지

Fig. 4. Comparison of observed and simulated (a) water level and (b) water temperature

SJBJB8_2019_v35n3_234_f0005.png 이미지

Fig. 5. Comparison of observed and simulated water temperature profiles (2007)

SJBJB8_2019_v35n3_234_f0006.png 이미지

Fig. 6. Historical (2005-2015), and projected (2016-2070) monthly water temperature, at the upper and lower layer in Soyanggang Reservoir.

SJBJB8_2019_v35n3_234_f0007.png 이미지

Fig. 7. Projected seasonal variations of annual water temperatures, at the upper and lower layer of the reservoir, in the future.

SJBJB8_2019_v35n3_234_f0008.png 이미지

Fig. 8. Calender heatmap showing averaged daily water temperature 2005-2070, at the (a) upper layer and the (b) lower layer.

SJBJB8_2019_v35n3_234_f0009.png 이미지

Fig. 9. (a) Schmidt stability 2016-2070 and (b) number of stratification formation days.

SJBJB8_2019_v35n3_234_f0010.png 이미지

Fig. 10. (a) Temperature dependence of growth rates for phytoplankton groups, (b) comparison of monthly phytoplankton growth rates between historical and projected periods.

Table 1. Statistical indices used to evaluate the model accuracy

SJBJB8_2019_v35n3_234_t0001.png 이미지

Table 2. Average air temperature and reservoir water temperature, at the upper and lower layer in Soyanggang Reservoir, for historical and projection periods.

SJBJB8_2019_v35n3_234_t0002.png 이미지

Table 3. Monthly historical and projected upper water temperatures and their difference.

SJBJB8_2019_v35n3_234_t0003.png 이미지

Table 4. Monthly historical and projected lower water temperatures and their difference.

SJBJB8_2019_v35n3_234_t0004.png 이미지

Table 5. Seasonal upper and lower water temperature and rise rate (2016~2070)

SJBJB8_2019_v35n3_234_t0005.png 이미지

Table 6. Seasonal upper-lower water temperature differences (2016 ~ 2070)

SJBJB8_2019_v35n3_234_t0006.png 이미지

Table 7. Average water temperature on the specified date 2005-2070, at the upper and lower layers

SJBJB8_2019_v35n3_234_t0007.png 이미지

Table 8. Parameters used for calculating the growth rate of each phytoplankton group

SJBJB8_2019_v35n3_234_t0008.png 이미지

Table 9. Comparison of growth rates of each phytoplankton group as a function of water temperature between historical and projected periods.unit: /d

SJBJB8_2019_v35n3_234_t0009.png 이미지

References

  1. Ahn, S. R., Kim, S. H., Yoon, S. W., and Kim, S. J. (2014). Evaluation of future turbidity water and eutrophication in Chungju lake by climate change using CE-QUAL-W2, Journal of Korea Water Resources Association, 47(2), 145-159. https://doi.org/10.3741/JKWRA.2014.47.2.145
  2. Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R., Santhi, C., Harmel, R. D., Griensven, A. V., Liew, M. W. V., Kannan, N., and Jha, M. K. (2012). SWAT: Model use, calibration, and validation, Transactions of the ASABE, 55(4), 1491-1508. https://doi.org/10.13031/2013.42256
  3. Bae, D. H., Jung, I. W., and Kwon, W. T. (2007). Generation of high scenarios for climate impacts on water resources (I): climate scenarios on each sub-basins, Journal of Korea Water Resources Association. 40(3), 191-204. [Korean Literature] https://doi.org/10.3741/JKWRA.2007.40.3.191
  4. Borsuk, M., Clemen, R., Maguire, L., and Reckhow, K. (2001). Stakeholder values and scientific modeling in the Neuse River watershed, Group Decision and Negotiation, 10(4), 355-373. https://doi.org/10.1023/A:1011231801266
  5. Bowen, J. D. and Hieronymus, J. W. (2003). A CE-QUAL-W2 model of Neuse Estuary for total maximum daily load development, Journal of Water Resources Planning and Management, 129(4), 283-294. https://doi.org/10.1061/(ASCE)0733-9496(2003)129:4(283)
  6. Bronstert, A. (2003). Floods and climate change: interactions and impacts, Risk Analysis: An International Journal, 23(3), 545-557. https://doi.org/10.1111/1539-6924.00335
  7. Butcher, J. B., Nover, D., Johnson, T. E., and Clark, C. M. (2015). Sensitivity of lake thermal and mixing dynamics to climate change, Climatic Change, 129(1-2), 295-305. https://doi.org/10.1007/s10584-015-1326-1
  8. Chapra, S. C., Boehlert, B., Fant, C., Bierman Jr, V. J., Henderson, J., Mills, D., Mas, D. M. L., Rennels, L., Jantarasami, L., Martinich, J., Strzepek, K. M., and Paerl, H. W. (2017). Climate change impacts on harmful algal blooms in US freshwaters: a screening-level assessment, Environmental Science & Technology, 51(16), 8933-8943. https://doi.org/10.1021/acs.est.7b01498
  9. Chung, S. W. and Park, H. S. (2017). Introduction of turbid water reduction and management technology development for extreme events, Korea Water Resource Association, 50(6), 50-57.
  10. Chung, S. W., Park, H. S., Yoon, S. W., and Ryu, I. G. (2011). Effect of installing a selective withdrawal structure for the control of turbid water in Soyang reservoir, Journal of Korean Society on Water Environment, 27(6), 743-753. [Korean Literature]
  11. Choi, J., Ahn, J., Kim, K. S., and Lim, K. J. (2007). Evaluation of SWAT Applicability to simulation of sediment behaviors at the Imha-Dam watershed, Journal of Korean Society on Water Environment, 23(4), 467-473. [Korean Literature]
  12. Cole, T. M., and Wells, S. A. (2017). CE-QUAL-W2: A two-dimensional, laterally averaged, hydrodynamic and water quality model, version 4.1, Department of Civil and Environmental Engineering Portland State Univeristy.
  13. Debele, B., Srinivasan, R., and Parlange, J. Y. (2008). Coupling upland watershed and downstream waterbody hydrodynamic and water quality models (SWAT and CE-QUAL-W2) for better water resources management in complex river basins, Environmental Modeling & Assessment, 13(1), 135-153. https://doi.org/10.1007/s10666-006-9075-1
  14. Edwards, K. F., Thomas, M. K., Klausmeier, C. A., and Litchman, E. (2016). Phytoplankton growth and the interaction of light and temperature: A synthesis at the species and community level, Limnology and Oceanography, 61(4), 1232-1244. https://doi.org/10.1002/lno.10282
  15. Fang, X. and Stefan, H. G. (2009). Simulations of climate effects on water temperature, dissolved oxygen, and ice and snow covers in lakes of the contiguous US under past and future climate scenarios, Limnology and Oceanography, 54(6part2), 2359-2370. https://doi.org/10.4319/lo.2009.54.6_part_2.2359
  16. Han, J. H., Lee, D. J., Kang, B. S., Chung, S. W., Jang, W. S., Lim, K. J., and Kim, J. G. (2017). Potential Impacts of Future Extreme Storm Events on Streamflow and Sediment in Soyangdam Watershed, Journal of Korean Society on Water Environment, 33(2), 160-169. [Korean Literature] https://doi.org/10.15681/KSWE.2017.33.2.160
  17. Intergovernmental Panel on Climate Change (IPCC). (2007). Climate change 2007: The physical science basis. Agenda, 6(07), 333.
  18. Intergovernmental Panel on Climate Change (IPCC). (2014). Mitigation of climate change, Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 1454.
  19. Jung, I. W., Bae, D. H., and Kim, G. (2011). Recent trends of mean and extreme precipitation in Korea, International journal of climatology, 31(3), 359-370. [Korean Literature] https://doi.org/10.1002/joc.2068
  20. Joung, S. H., Park, H. K., Lee, H. J. and Lee, S. H., (2013). Effect of climate change for diatom bloom at winter and spring season in Mulgeum station of the Nakdong river, South Korea, Journal of Korean Society on Water Environment, 29(2), 155-164. [Korean Literature]
  21. Kang, B. and Moon, S. (2017). Regional hydro climatic projection using an coupled composite downscaling model with statistical bias corrector, KSCE Journal of Civil Engineering, 21(7), 2991-3002. https://doi.org/10.1007/s12205-017-1176-7
  22. Kim, B. C. and Kim, Y. H. (2004). Articles : phosphorus cycle in a deep reservoir in Asian Monsoon Area(Lake Soyang, Korea) and the modeling with a 2-D hydrodynamic water quality model [CE-QUAL-W2], Korean Journal of Limnology, 37(2), 205-212. [Korean Literature]
  23. Kim, B. S., Kwon, H. H., and Kim, H. S. (2011). Impact assessment of climate change on drought risk, Journal of Wetlands Researh, 1, 9. [Korean Literature]
  24. Kim, Y. H., Kim, B. C., Choi, K. S., and Seo, D. I. (2001). Modeling of Thermal Stratification and Transport of Density Flow in Soyang Reservoir Using the 2-D Hydrodynamic Water Quality Model, CE-QUAL-W2, Journal of the Korean Society of Water and Wastewater, 18, 96-105. [Korean Literature]
  25. Kosten, S., Roland, F., Da Motta Marques, D. M., Van Nes, E. H., Mazzeo, N., Sternberg, L. D. S., Scheffer, M., and Cole, J. J. (2010). Climate dependent $CO_2$ emissions from lakes, Global Biogeochemical Cycles, 24(2).
  26. Kundzewicz, Z. W., Kanae, S., Seneviratne, S. I., Handmer, J., Nicholls, N., Peduzzi, P., Mechler, R., Bouwer, L. M., Arnell, N., Mach, K., Muir-Wood, R. Brakenridge, G. R., Kron, W., Benito, G., Honda, Y., Takahashi, K., and Sherstyukov, B. (2014). Flood risk and climate change: global and regional perspectives, Hydrological Sciences Journal, 59(1), 1-28. https://doi.org/10.1080/02626667.2013.857411
  27. K-water. (1994). Research report on the reservoir of Soyang river dam. [Korean Literature]
  28. K-water. (2007). Multipurpose dam (four dams including Soyanggang Dam) Establishment of turbid water reduction plan (Soyanggang Dam). [Korean Literature]
  29. Lee, K. H. (2016). Prediction of climate-induced water temperature using nonlinear air-water temperature relationship for aquatic environments, Journal of Environmental Science International, 25(6), 877-888. [Korean Literature] https://doi.org/10.5322/JESI.2016.25.6.877
  30. Lee, J. W., Eom, J. S., Kim, B. C., Jang, W. S., Ryu, J. C., Kang, H. W., Kim, K. S.. and Lim, K. J. (2011). Water quality prediction at mandae watershed using SWAT and water quality improvement with Vegetated Filter Strip. Journal of the Korean Society of Agricultural Engineers, 53(1), 37-45. [Korean Literature] https://doi.org/10.5389/KSAE.2011.53.1.037
  31. Martin, J. L., McCutcheon, S. C., and Schottman, R. W. (1999). Dynamic modeling of estuaries, In Hydrodynamics and Transport for Water Quality Modeling, CRC Press, 521-770.
  32. Neitsch, S. L., Arnold, J. G., Kiniry, J. R., and Williams, J. R. (2009). Soil and water assessment tool theoretical documentation version 2009, Texas Water Resources Institute.
  33. Noh, S., Park, H., Choi, H., and Lee, J. (2014). Effect of Climate Change for cyanobacteria growth pattern in chudong station of lake Daechung, Journal of Korean Society on Water Environment, 30(4), 377-385. [Korean Literature] https://doi.org/10.15681/KSWE.2014.30.4.377
  34. Paerl, H. W., Hall, N. S., and Calandrino, E. S. (2011). Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change, Science of the Total Environment, 409(10), 1739-1745. https://doi.org/10.1016/j.scitotenv.2011.02.001
  35. Paerl, H. W. and Huisman, J. (2009). Climate change: a catalyst for global expansion of harmful cyanobacterial blooms, Environmental microbiology reports, 1(1), 27-37. https://doi.org/10.1111/j.1758-2229.2008.00004.x
  36. Paerl, H. W. and Otten, T. G. (2013). Harmful cyanobacterial blooms: causes, consequences, and controls, Microbial ecology, 65(4), 995-1010. https://doi.org/10.1007/s00248-012-0159-y
  37. Paerl, H. W. and Paul, V. J. (2012). Climate change: links to global expansion of harmful cyanobacteria, Water research, 46(5), 1349-1363. https://doi.org/10.1016/j.watres.2011.08.002
  38. Park, H. and Chung, S. (2018). $pCO_2$ Dynamics of Stratified Reservoir in Temperate Zone and $CO_2$ Pulse Emissions During Turnover Events, Water, 10(10), 1347. https://doi.org/10.3390/w10101347
  39. Park, H., Chung, S., Cho, E., and Lim, K. (2018). Impact of climate change on the persistent turbidity issue of a large dam reservoir in the temperate monsoon region, Climatic Change, 151(3-4), 365-378. [Korean Literature] https://doi.org/10.1007/s10584-018-2322-z
  40. Park, J., Jang, Y., and Seo, D. (2017). Water quality prediction of inflow of the Yongdam Dam basin and its reservoir using SWAT and CE-QUAL-W2 models in series to climate change scenarios, Journal of Korea Water Resources Association, 50(10), 703-714. https://doi.org/10.3741/JKWRA.2017.50.10.703
  41. Sahoo, G. B., Schladow, S. G., Reuter, J. E., and Coats, R. (2011). Effects of climate change on thermal properties of lakes and reservoirs, and possible implications, Stochastic Environmental Research and Risk Assessment, 25(4), 445-456. https://doi.org/10.1007/s00477-010-0414-z
  42. Sheffield, J., and Wood, E. F. (2008). Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations, Climate dynamics, 31(1), 79-105. https://doi.org/10.1007/s00382-007-0340-z
  43. Trenberth, K. E., Dai, A., Van Der Schrier, G., Jones, P. D., Barichivich, J., Briffa, K. R., and Sheffield, J. (2013). Global warming and changes in drought, Nature Climate Change, 4(1), 17. https://doi.org/10.1038/nclimate2067
  44. Wagner, C., and Adrian, R. (2009). Cyanobacteria dominance: quantifying the effects of climate change, Limnology and Oceanography, 54(6part2), 2460-2468. https://doi.org/10.4319/lo.2009.54.6_part_2.2460
  45. Wetzel, R. G. (2001). Limnology: lake and river ecosystems, gulf professional publishing.
  46. Winslow, L., Read, J., Woolway, R., Brentrup, J., Leach, T., Zwart, J., Albert, S., and Collinge, D. (2018). Package 'rLakeAnalyzer'.
  47. Ye, L., Yoon, S. W., and Chung, S. W. (2008). Application of SWAT for the estimation of soil loss in the Daecheong Dam Basin, Journal of Korea Water Resources Association, 41(2), 149-162. [Korean Literature] https://doi.org/10.3741/JKWRA.2008.41.2.149
  48. Yi, H. S., Kim, D. S., Hwang, M. H., and An, K. G. (2016). Assessment of runoff and water temperature variations under RCP climate change scenario in Yongdam dam watershed, South Korea, Journal of Korean Society on Water Environment, 32(2), 173-182. [Korean Literature] https://doi.org/10.15681/KSWE.2016.32.2.173
  49. Yu, J. J., Lee, H. J., Lee, K. L., Lyu, H. S., Whang, J. H., Shin, L. Y., and Chen, S. U. (2014). Relationship between Distribution of the Dominant Phytoplankton Species and Water Temperature in the Nakdong River, Korea, The Korean Society Of Limnology, 47(4). 247-257. [Korean Literature]