• Title/Summary/Keyword: Water-soluble ions

Search Result 135, Processing Time 0.028 seconds

Characterization and source apportionment by factor analysis of water soluble ions in atmospheric particles in Cheonan, Korea (천안시 대기 입자 중 수용성 이온성분의 계절적 특성 및 요인분석을 통한 오염기여도 평가)

  • Oh, Se-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.1020-1026
    • /
    • 2011
  • Seasonal characteristics of water soluble ions in atmospheric particles in Cheonan were studied between 2008 and 2009. $Na^+$, $NH_4^+$ and $NO_3^-$, $SO_4^{2-}$ were the principle cations and anions in both coarse and fine particles. Water soluble ions occupied 24.4%(spring), 33.2%(summer), 40.7%(fall), and 39.6%(winter) of the total mass of coarse particles. In fine particles, 43.0%(spring), 59.7%(summer), 55.4%(fall), and 53.2%(winter) of mass were occupied by water soluble ions. From the factor analysis, 2 and 4 factors were extracted for water soluble ions in coarse and fine particles, respectively. 70.33% of water ions in the coarse particles were estimated from the natural source, but 66.01% in the fine particles were from the anthropogenic source.

Weekday/weekend Chemical Characteristics of Water-Soluble Components of PM10 at Busan in Springtime (부산지역 봄철 주중/주말의 PM10 중 이온성분의 화학적 조성)

  • Jeon, Byung-Il
    • Journal of Environmental Science International
    • /
    • v.24 no.6
    • /
    • pp.785-792
    • /
    • 2015
  • This study investigates weekday/weekend characteristics of $PM_{10}$ concentration and chemical composition of water-soluble ions in Busan in the spring of 2013. Contribution rate of water-soluble ions to PM10 concentration in weekday/weekend were 41.5% and 38.5%, respectively. Contribution rate of SO_4{^{2-}}$ to total ion mass in weekday/weekend were 30.4% and 33.8%, respectively. Contribution rate of total inorganic water-soluble ions in PM10 in weekday/weekend were 42.2% and 39.1% (mean 41.4%), respectively. $[NO_3{^-}/SO_4{^{2-}}]$ ratio in weekday/weekend were 1.01 and 0.97(mean 0.99), respectively, which indicated that weekday ratio was higher. Contribution rate of sea salts and $Cl^-/Na^+$ ratio in PM10 in weekday/weekend were 8.1% and 7.6%, 0.37% and 0.41%, respectively. This research will help understand chemical composition of water-soluble ions during the weekday/weekend and will be able to measure the contribution level of artificial anthropogenic source on urban air.

Daily Concentration Measurements of Water-soluble Inorganic Ions in the Atmospheric Fine Particulate for Respiratory Deposition Region (호흡기 침착부위에 따른 미세먼지 중 수용성 이온성분의 일별 농도 측정)

  • Kang, Gong-Unn;Lee, Sang-Bok
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.5 s.86
    • /
    • pp.387-397
    • /
    • 2005
  • In oder to understand the deposition possibility of water-soluble inorganic ions in the atmospheric fine particulates for the human respiratory tract, the mass size distribution of ion species was measured using an Anderson sampler in the Iksan during fall, 2004. Samples were analyzed for major water-soluble ions using Dionex DX-100 ion chromatograph. The size distribution of water-soluble inorganic ions in the atmospheric particulates appeared bimodal distribution, which were divided around $1-2{\mu}m$ into two groups. Mass site distribution of total ion in the coarse mode was found to be almost similar level during the sampling period, but fluctuations of mass size distribution in the fine mode were observed. Considering the mass size distribution of total ion concentrations for the respiratory deposition region, it was found that about 77.1% of total tons could be deposited in the alveolar region, and which dominated the daily variation of total ion concentrations. The concentration of total ions, which could be deposited in both the head region and the tracheobronchial region, was $3.95{\mu}g/m^3$, whereas that in the alveolar rerion was $13.28{\mu}g/m^3$. Dominant ions which could be deposited in the alveolar region were ${NO_3}{^-},\;{SO_4}^{2-}\;and\;{NH_4{^+}$, accounting for about 40%, 27% and 22% of the total ions, respectively. Although $K^+$ was approximately 3% of total ions, it was shown that most of this could be deposited in the alveolar region due to its high fraction of small size distribution originated from anthropogenic source of biomass burning. The presence of these ions in the fine mode may be of public health significance as they are very biologically harmful to health and have a high probability of being deposited in human lung tissue.

A Study on Adsorption of Heavy Metal Ions Using Water-soluble Chitosan Derivative (수용성 Chitosan 유도체를 이용한 중금속 이온 흡착에 관한 연구)

  • Lee, Kwang-Il;Kwak, Chun-Geun;Kim, Young-Ju;Jang, Buyng-Man;Kim, Sang-Ho;Lee, Ki-Chang
    • Journal of the Korean Applied Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.85-92
    • /
    • 1996
  • Chitosan itself has been prepared using chitin, one of the most abundant compounds in nature, as a starting material. We have synthesized the water-soluble chitosan derivative, N-dithiocarboxy chitosan sodium salt, through the reaction of water-soluble chitosan with carbon disulfide in the presence of alkali metal hydroxide. To elucidate this natural polymer capacity of adsorbing heavy metal ions, we have performed adsorption experiments using the water-soluble chitosan derivative various average molecular weight and of different percent contents of sulfur. The effect of pH, adsorption time and temperature on adsorption efficiency was also studied. The adsorbent derived from water-soluble chitosan of average molecular weight ranging $9,000{\sim}120,000$ was shown to have the highest capacity of adsorbing heavy metal ions. On the whole, adsorbing efficiency was increased as the reaction time goes longer and also increased as the reaction temperture goes higer in temperture range of $15^{\circ}C{\sim}45^{\circ}C$. The adsorption capacity at various pH, however, was appeared to vary depending on the heavy metal ions studied Judging from these finding, water-soluble N-dithiocarboxy chitosan sodium salt, a derivative of a biodegradable nature polymer, is believed to be a potential adsorbent for heavy metal ions since it not only is shown to lower the concentration of heavy metal ions to below the drainage quality standard, but also it would not cause acidification and hardening of soil which is one of the detrimental effects of synthetic macromolecular adsorbents present.

The Water Soluble Ionic Composition of PM2.5 at 1,100 m-Highland of Mt. Hallasan on Jeju Island, Korea (한라산 1,100 m 지역의 대기 중 PM2.5의 수용성 이온 조성)

  • Lee, Ki Ho;Hu, Chul Goo
    • Journal of Environmental Science International
    • /
    • v.25 no.5
    • /
    • pp.727-736
    • /
    • 2016
  • The ambient mass concentration and chemical composition of the $PM_{2.5}$ were determined at the highland site with 1,100 m above sea level on Jeju Island from June 2013 to November 2014. Yearly averaged mass concentration of $PM_{2.5}$ was $11.97{\pm}8.63{\mu}g/m^3$. $PM_{2.5}$ concentrations were highest during the spring, while they tended to be lowest during the summer. Eight water soluble ionic species attributed 45.5% to $PM_{2.5}$ mass. $SO{_4}^{2-}$, $NO_3{^-}$ and $NH_4{^+}$ were major ions, which occupied to 27.9%, 3.7% and 12.3%, respectively. The greatest contributors to total mass concentration of water-soluble ions contained in $PM_{2.5}$ were sulfate, ammonium and nitrate. These three ions accounted for 96.6% in total ions mass concentration of $PM_{2.5}$. We could infer that these three secondary ions exist mostly in the form of $(NH_4)_2SO_4$ and $NH_4NO_3$. $Ca^{2+}$ and $Mg^{2+}$ had a good relationship and with r=0.9. The molar ratio of $Mg^{2+}/Ca^{2+}$ in this study was lower than the value observed in sea water and higher than that in soil dust, indicating that these two ions originated from other sources rather than ocean and soil dust in this study.

Formation and Chemical Characteristics of Dewfall in 2005 at Busan (2005년 부산지역 이슬의 생성과 화학적 특성)

  • Jeon, Byung-Il;Hwang, Yong-Sik;Park, Gwang-Soon
    • Journal of Environmental Science International
    • /
    • v.15 no.9
    • /
    • pp.847-853
    • /
    • 2006
  • In order to understand chemical characteristics and formation of dewfall in Busan, we analysed monthly distribution of dewfall, and investigated its chemical composition of dewfall. This study used the modified teflon plate $(1m{\times}1m)$ at Jangyongsil science high school from June 2005 to October 2005. In order to estimate qualitatively water soluble components, IC, ICP and UV methods for water soluble ions are also used respectively. Dewfall amount of sampling periods (26 day) collected 1.29 mm. Distribution of water soluble ions in dewfall founded the highest concentration $(81.3{\mu}eq/{\ell}\;for\;NO_3^-,\;146.6{\mu}eq/{\ell}\;for\;SO_4^{2-},\;and\;114.3{\mu}eq/{\ell}\;for\;nss-SO_4^{2-})$ during the June. pH was the lowest by 5.12 June, and October (pH 6.68) by most high and average pH was 5.46. Monthly equivalent ratio of $[SO_4^{2-}]/[NO_3^-]$ showed the highest value (2.94) during the September, the lowest value (1.77) during the July, and the mean value was 3.45.

Preparation of Water Soluble Chitosan Blendmers and Their Application to Removal of Heavy Metal ions from Wastewater

  • Seo, Sang-Bong;Toshio Kajiuchi;Kim, Dae-In;Lee, Soon-Hong;Kim, Hak-Kil
    • Macromolecular Research
    • /
    • v.10 no.2
    • /
    • pp.103-107
    • /
    • 2002
  • High purity water soluble chitosans (WsCs) were employed as a flocculant to remove heavy metal ions from wastewater of industrial plating wastewater treatment complex. Their weight average molecular weights and polydispersities were 272,000~620,000 g/mol and 1.4~1.9 range, respectively and were readily soluble in water in the pH range of 3~11. Heavy metal ions such as chromium, iron and copper were removed well by WsCs. When WsCs was blended with either sodium N, N-diethyldithiocarbamate trihydrate (SDDC$_{T}$) or sodium salicylate (SSc), the removal efficiency was further increased primarily due to the excess amount of hydrophilic sulfonic and carboxylic groups. Especially, in the case of WsCs-SSc the remaining chromium and copper concentrations were 0.1 mg/L and 9.5 mg/L, which are 1/15 and 1/3 compared with that of pure WsCs, respectively. The former is within the acceptable limit, but the latter is not. Therefore, the effective copper flocculant remains to be studied.d.

Cadmium and zinc removal from water by polyelectrolyte enhanced ultrafiltration

  • Ennigrou, Dorra Jellouli;Ali, Mourad Ben Sik;Dhahbi, Mahmoud;Mokhtar, Ferid
    • Membrane and Water Treatment
    • /
    • v.5 no.3
    • /
    • pp.183-195
    • /
    • 2014
  • The efficiency of two metal ions (cadmium, zinc) removal from aqueous solutions by ultrafiltration (UF) and Polymer Enhanced Ultrafiltration (PEUF) processes were investigated in this work. The UF and PEUF studies were carried out using an ultrafiltration tangential cell system equipped with 5.000 MWCO regenerated cellulose. A water-soluble polymer: the polyacrylic acid (PAA) was used as complexant for PEUF experiments. The effects of transmembrane pressure, pH, metal ions and loading ratio on permeate fluxes and metal ions removals were evaluated. In UF process, permeate fluxes increase linearly with increasing pH for different transmembrane pressure, which may be the consequence of the formation of soluble metal hydroxyl complexes in the aqueous phase. In PEUF process, above pH 5.0, the Cd(II) retention reaches a plateau at 90% and Zn(II) at 80% for L = 5. Also, cadmium retention at different L is greater than zinc retention at pH varying from 5.0 to 9.0. In a mixture solution, cadmium retention is higher than zinc for different loading ratio, this is due to interactions between carboxylic groups of PAA and metal ions and more important with cadmium ions.

Characteristics of Water Soluble Ions in Fine Particles during the Winter and Spring in Daegu (대구지역 겨울철과 봄철 미세먼지의 수용성 이온성분 특성)

  • Park, Ji-Yeon;Lim, Ho-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.5
    • /
    • pp.627-641
    • /
    • 2006
  • Atmospheric $PM_{2.5}$ and $PM_{10}$ were measured to investigate their levels and water-soluble ions(${SO_4}^{2-},\;{NO_3}^-,\;{NO_2}^-,\;Cl^-,\;{NH_4}^+,\;Na^+,\;Ca^{2+},\;Mg^{2+},\;and\;K^+$) in Daegu between February 17 and April 18, 2006. Four Asian dust episodes during the period were examined for the influence of Asian dust on the particulate properties. Daily $PM_{2.5}\;and\;PM_{2.5-10}$ concentrations ranged between $10.83{\sim}136.76{\mu}g/m^3$ with a mean of $38.43{\mu}g/m^3$ and $16.13{\sim}409.13{\mu}g/m^3$ with a mean of $79.98{\mu}g/m^3$, respectively. For all measured ions the mean fractions of $PM_{2.5}\;and\;PM_{2.5-10}$ were 51.8% and 28.9% being lowered to 30.7% and 9.4%, respectively, during the dust episodes. Secondary ions (i.e., non-sea salt ${SO_4}^{2-},\;{NO_3}^-,\;and\;{NH_4}^+$) contributed 44.3% and 14.8% to $PM_{2.5}\;and\;PM_{2.5-10}$, respectively, with a decreased contribution during the episodes. The average equivalent ratio of ${NH_4}^+$ to the sum of ${SO_4}^{2-}\;and\;{NO_3}^-$ was 0.99 and 0.89 for $PM_{2.5}\;and\;PM_{2.5-10}$, respectively, indicating high source strength of $NH_3$ and its dominance in the neutralization of the acidic ions. Correlations and charge balance between ions suggest that neutralization of the acidic ions results in substantial depletions of carbonate both in $PM_{2.5}\;and\;PM_{2.5-10}$ and chloride only in $PM_{2.5}$.

Development of a Functional Mortar for Algae Growth Restraining by Using Soluble Glass (수용성 유리를 이용한 조류 생장 억제형 기능성 모르타르의 개발)

  • Kim, Jun Hwan;Kang, Hojeong;Choi, Se Young;Lim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.791-799
    • /
    • 2015
  • This study focuses on the algae growth restraining. Many researches on a critical damage from algae growth are published, but it is hard to find how th restrain. Abnormal algae increasing is a problem, because it makes red tides, biodeterioration, etc. Therefore this study aims to decrease the damage from algae growth. Some metal ions have been used microorganism killing materials from old times. Especially, Cu ions are highly effective. Based on these uses of the metal ions, a functional mortar which restrains algae growth is developed. The mortar contains soluble glass which dissolve in water. The soluble glass was made of Cu ions and phosphates. When the soluble glass is dissolved, Cu ions are soaked out stably from the soluble glass. Culture mediums which incubate algae were made to evaluate the developed mortar specimens. Culture mediums were filled with fresh water and sea water. Algae were incubated for fourteen days in culture mediums. The evaluating methods are measuring volume of the dissolved organic carbon and the chlorophyll. Using these two measurements, the mortar specimens are judged that can restrain algae or not. According to the result, the functional mortars of culture medium filled with fresh and sea water shows similar trend. The functional mortar for restraining algae growth performs that's role well.