• Title/Summary/Keyword: Water-dispersible nanocrystals

Search Result 10, Processing Time 0.021 seconds

Synthesis of Water-Dispersible Maghemite Nanocrystals using 6-Aminohexanoic Acid as a Capping Agent (6-Aminohexanoic Acid를 이용하여 물에 분산되는 Maghemite 나노입자의 합성)

  • Yu, Taekyung
    • Korean Chemical Engineering Research
    • /
    • v.51 no.3
    • /
    • pp.403-406
    • /
    • 2013
  • This paper describes a simple route to synthesis of water-dispersible monodisperse maghemite (${\gamma}-Fe_2O_3$) nanocrystals using 6-aminohexanoic acid (AHA) as a stabilizer. The water-dispersible ${\gamma}-Fe_2O_3$ nanocrystals with an average size of 5 nm were obtained simply by addition of $Fe(CO)_5$ into an octyl ether solution containing AHA at $195^{\circ}C$ under argon condition. As-prepared AHA coated ${\gamma}-Fe_2O_3$ nanocrystals exhibited highly crystallinity and magnetic property while keeping a good dispersity in an aqueous phase. We also obtained water-dispersible AHA coated ${\gamma}-Fe_2O_3$ nanocrystals using ligand-exchange method, demonstrating that AHA can be a good candidate for preparing water-dispersible uniform metal oxide nanocrystals.

Syntheses and Characterizations of Serine and Threonine Capped Water-Dispersible ZnS:Mn Nanocrystals and Comparison Study of Toxicity Effects on the growth of E. coli by the Methionine, Serine, Threonine, and Valine Capped ZnS:Mn Nanocrystals

  • Lim, Eun-Ju;Park, Sang-Hyun;Byun, Jong-Hoe;Hwang, Cheong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1741-1747
    • /
    • 2012
  • Water-dispersible ZnS:Mn nanocrystals were synthesized by capping the surface of the nanocrystals with conventional aminoacids ligands: serine and threonine. The aminoacids capped ZnS:Mn nanocrystal powders were characterized by XRD, HR-TEM, EDXS, ICP-AES and FT-IR spectroscopy. The optical properties were also measured by UV/Vis and solution photoluminescence (PL) spectroscopies in aqueous solvents. The solution PL spectra showed broad emission peaks around 600 nm with PL efficiencies of 9.7% (ZnS:Mn-Ser) and 15.4% (ZnS:Mn-Thr) respectively. The measured particle sizes for the aminoacid capped ZnS:Mn nanocrystals by HR-TEM images were about 3.0-4.0 nm, which were also supported by Debye-Scherrer calculations. In addition, cytotoxic effects of four aminoacids capped ZnS:Mn nanocrsystals over the growth of wild type E. coli were investigated. Although toxicity in the form of growth inhibition was observed with all the aminoacids capped ZnS:Mn nanocrystals at higher dose (1 mg/mL), ZnS:Mn-Met and ZnS:Mn-Thr appeared non-toxic at doses less than 100 ${\mu}g$/mL. Low biological toxicities were seen at doses less than 10 ${\mu}g$/ mL for all nanocrystals.

Syntheses and Optical Properties of the Water-Dispersible ZnS:Mn Nanocrystals Surface Capped by L-Aminoacid Ligands: Arginine, Cysteine, Histidine, and Methionine

  • Lee, Ju-Ho;Kim, Yong-Ah;Kim, Ki-Moon;Huh, Young-Duk;Hyun, June-Won;Kim, H.S.;Noh, S.J.;Hwang, Cheong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.7
    • /
    • pp.1091-1096
    • /
    • 2007
  • Water dispersible ZnS:Mn nanocrystals were synthesized by capping the surface of the nanocrystals with four kinds of aminoacids ligands: arginine, cystein, histidine, and methionine. The aminoacids capped ZnS:Mn nanocrystal powders were characterized by XRD, HR-TEM, EDXS, and FT-IR spectroscopy. The optical properties of the aminoacids capped ZnS:Mn colloidal nanocrystals were also measured by UV/Vis and solution photoluminescence (PL) spectroscopies in aqueous solvents. The solution PL spectra showed broad emission peaks around 575 nm (orange light emissions) with PL efficiencies in the range of 4.4 to 7.1%. The measured particle sizes for the aminoacid capped ZnS:Mn nanocrystals by HR-TEM images were in the range of 5.3 to 11.7 nm.

EDTA Surface Capped Water-Dispersible ZnSe and ZnS:Mn Nanocrystals

  • Lee, Jae-Woog;Lee, Sang-Min;Huh, Young-Duk;Hwang, Cheong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.1997-2002
    • /
    • 2010
  • ZnSe and ZnS:Mn nanocrystals were synthesized via the thermal decomposition of their corresponding organometallic precursors in a hot coordinating solvent (TOP/TOPO) mixture. The organic surface capping agents were substituted with EDTA molecules to impart hydrophilic surface properties to the resulting nanocrystals. The optical properties of the water-dispersible nanocrystals were analyzed by UV-visible and room temperature solution photoluminescence (PL) spectroscopy. The powders were characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), and confocal laser scanning microscopy (CLSM). The solution PL spectra revealed emission peaks at 390 (ZnSe-EDTA) and 597 (ZnS:Mn-EDTA) nm with PL efficiencies of 4.0 (former) and 2.4% (latter), respectively. Two-photon spectra were obtained by fixing the excitation light source wavelengths at 616 nm (ZnSe-EDTA) and 560 nm (ZnS:Mn-EDTA). The emission peaks appeared at the same positions to that of the PL spectra but with lower peak intensity. In addition, the morphology and sizes of the nanocrystals were estimated from the corresponding HR-TEM images. The measured average particle sizes were 5.4 nm (ZnSe-EDTA) with a standard deviation of 1.2 nm, and 4.7 nm (ZnS:Mn-EDTA) with a standard deviation of 0.8 nm, respectively.

White Light Emission from a Colloidal Mixture Containing ZnS Based Nanocrystals: ZnS, ZnS:Cu and ZnS:Mn

  • Lee, Jae Woog;Hwang, Cheong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.189-196
    • /
    • 2014
  • Water dispersible ZnS based nanocrystals: ZnS (blue), ZnS:Cu (green) and ZnS:Mn (yellow-orange) were synthesized by capping the surface of the nanocrystals with a mercaptopropionic acid (MPA) molecule. The MPA capped ZnS based nanocrystal powders were characterized by using XRD, HR-TEM, EDXS, FT-IR, and FT-Raman spectroscopy. The optical properties of the colloidal nanocrystals were also measured by UV/Vis and photoluminescence (PL) spectroscopies in aqueous solvents. The PL spectra showed broad emission peaks at 440 nm (ZnS), 510 nm (ZnS:Cu) and 600 nm (ZnS:Mn), with relative PL efficiencies in the range of 4.38% to 7.20% compared to a reference organic dye. The measured average particle sizes from the HR-TEM images were in the range of 4.5 to 5.0 nm. White light emission was obtained by mixing these three nanocrystals at a molar ratio of 20 (ZnS):1 (ZnS:Cu):2 (ZnS:Mn) in water. The measured color coordinate of the white light was (0.31, 0.34) in the CIE chromaticity diagram, and the color temperature was 5527 K.

Syntheses of Biologically Non-Toxic ZnS:Mn Nanocrystals by Surface Capping with O-(2-aminoethyl)polyethylene Glycol and O-(2-carboxyethyl)polyethylene Glycol Molecules

  • Kong, Hoon-Young;Song, Byung-Kwan;Byun, Jonghoe;Hwang, Cheong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1181-1187
    • /
    • 2013
  • Water-dispersible ZnS:Mn nanocrystals were synthesized by capping the surface of the nanocrystal with O-(2-Aminoethyl)polyethylene glycol (PEG-$NH_2$, Mw = 10,000 g/mol) and O-(2-Carboxyethyl)polyethylene glycol (PEG-COOH, Mw = 10,000 g/mol) molecules. The modified PEG capped ZnS:Mn nanocrystal powders were thoroughly characterized by XRD, HR-TEM, EDXS, ICP-AES and FT-IR spectroscopy. The optical properties were also measured by UV/Vis and photoluminescence (PL) spectroscopies. The PL spectra showed broad emission peaks at 600 nm with similar PL efficiencies of 7.68% (ZnS:Mn-PEG-NH2) and 9.18% (ZnS:Mn-PEG-COOH) respectively. The measured average particle sizes for the modified PEG capped ZnS:Mn nanocrystals by HR-TEM images were 5.6 nm (ZnS:Mn-PEG-NH2) and 6.4 nm (ZnS:Mn-PEG-COOH), which were also supported by Debye-Scherrer calculations. In addition, biological toxicity effects of the nanocrystals over the growth of wild type E. coli were investigated. They showed no biological toxicity to E. coli until very high concentration dosage of 1 mg/mL of the both nanocrystal samples.

Differential Effects of Cysteine and Histidine-Capped ZnS:Mn Nanocrystals on Escherichia coli and Human Cells

  • Kong, Hoon-Young;Kim, Song-Yi;Byun, Jong-Hoe;Hwang, Cheong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.53-58
    • /
    • 2011
  • Cysteine and histidine-capped water-dispersible ZnS:Mn nanocrystals (ZnS:Mn-Cys and ZnS:Mn-His) were synthesized and their effects on E. coli and human cells were investigated. Particle sizes of these nanocrystals were found from HR-TEM images to be 3.5 nm and 4.0 nm, respectively. Their solution photoluminescence spectra showed identical broad emission peaks at 580 nm. ZnS:Mn-His significantly suppressed the growth of E. coli at $100{\mu}g/mL$ and 1 mg/mL concentrations, something not observed with ZnS:Mn-Cys. Consistent with this, greater inhibition of cell proliferation and viability were observed in HEK293 and IMR90 cells in ZnS:Mn-His at $100{\mu}g/mL$ and 1 mg/mL concentrations.

Biological Toxicities and Aggregation Effects of ʟ-Glycine and ʟ-Alanine Capped ZnS:Mn Nanocrystals in Aqueous Solution

  • Park, Sanghyun;Song, Byungkwan;Kong, Hoon Young;Byun, Jonghoe;Hwang, Cheong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1169-1176
    • /
    • 2014
  • In this study, water-dispersible ZnS:Mn nanocrystals were synthesized by capping the surface with conventional and simple structured amino acid ligands: $\small{L}$-Glycine and $\small{L}$-Alanine. The ZnS:Mn-Gly and ZnS:Mn-Ala nanocrystal powders were characterized by XRD, HR-TEM, EDXS, ICP-AES, and FT-IR spectroscopy. The optical properties were measured by UV-Visible and photoluminescence (PL) spectroscopy. The PL spectra for the ZnS:Mn-Gly and ZnS:Mn-Ala showed broad emission peaks at 599 nm and 607 nm with PL efficiencies of 6.5% and 7.8%, respectively. The measured average particle size from the HR-TEM images were $6.4{\pm}0.8$ nm (ZnS:Mn-Gly) and $4.1{\pm}0.5$ nm (ZnS:Mn-Ala), which were also supported by Debye-Scherrer calculations. In addition, the degree of aggregation of the nanocrystals in aqueous solutions were measured by a hydrodynamic light scattering method, which showed formation of sub-micrometer size aggregates for both ZnS:Mn-Gly ($273{\pm}94$ nm) and ZnS:Mn-Ala ($233{\pm}34$ nm) in water due to the intermolecular attraction between the capping amino acids molecules. Finally, the cytotoxic effects of ZnS:Mn-Gly and ZnS:Mn-Ala nanocrsystals over the growth of wild type E. coli were investigated. As a result, no toxicity was shown for the ZnS:Mn-Gly nanocrystal in the colloidal concentration region from 1 ${\mu}g/mL$ to 1000 ${\mu}g/mL$, while ZnS:Mn-Ala showed significant toxicity at 100 ${\mu}g/mL$.