DOI QR코드

DOI QR Code

Syntheses and Optical Properties of the Water-Dispersible ZnS:Mn Nanocrystals Surface Capped by L-Aminoacid Ligands: Arginine, Cysteine, Histidine, and Methionine

  • Lee, Ju-Ho (Department of Applied Physics, Dankook University, Institute of Nanosensor and Biotechnology) ;
  • Kim, Yong-Ah (Department of Chemistry, Dankook University, Institute of Nanosensor and Biotechnology) ;
  • Kim, Ki-Moon (Department of Chemistry, Dankook University, Institute of Nanosensor and Biotechnology) ;
  • Huh, Young-Duk (Department of Chemistry, Dankook University, Institute of Nanosensor and Biotechnology) ;
  • Hyun, June-Won (Department of Applied Physics, Dankook University, Institute of Nanosensor and Biotechnology) ;
  • Kim, H.S. (Department of Applied Physics, Dankook University, Institute of Nanosensor and Biotechnology) ;
  • Noh, S.J. (Department of Applied Physics, Dankook University, Institute of Nanosensor and Biotechnology) ;
  • Hwang, Cheong-Soo (Department of Chemistry, Dankook University, Institute of Nanosensor and Biotechnology)
  • Published : 2007.07.20

Abstract

Water dispersible ZnS:Mn nanocrystals were synthesized by capping the surface of the nanocrystals with four kinds of aminoacids ligands: arginine, cystein, histidine, and methionine. The aminoacids capped ZnS:Mn nanocrystal powders were characterized by XRD, HR-TEM, EDXS, and FT-IR spectroscopy. The optical properties of the aminoacids capped ZnS:Mn colloidal nanocrystals were also measured by UV/Vis and solution photoluminescence (PL) spectroscopies in aqueous solvents. The solution PL spectra showed broad emission peaks around 575 nm (orange light emissions) with PL efficiencies in the range of 4.4 to 7.1%. The measured particle sizes for the aminoacid capped ZnS:Mn nanocrystals by HR-TEM images were in the range of 5.3 to 11.7 nm.

Keywords

References

  1. Weller, H. Angew. Chem. Int. Ed. Engl. 1993, 32, 41 https://doi.org/10.1002/anie.199300411
  2. Bol, A. A.; Meuijernk, A. Phys. Rev. B 1998, 24, 58
  3. Alivisatos, A. P. J. Phys. Chem. 1996, 100, 13226 https://doi.org/10.1021/jp9535506
  4. Brus, L. E. Appl. Phys. A: Solid Surf. 1991, 53, 465 https://doi.org/10.1007/BF00331535
  5. Milliron, D. J.; Alivisatos, A. P.; Pitois, C.; Edder, C.; Frechet, J. M. J. Adv. Mater. 2003, 15, 58 https://doi.org/10.1002/adma.200390011
  6. Jaiswal, J. K.; Mattoussi, H.; Mauro, J. M.; Simon, S. M. Nature Biotechnol. 2002, 21, 47 https://doi.org/10.1038/nbt767
  7. Heath, J. R. Acc. Chem. Res. 1999, 32
  8. Hoffman, A. J.; Mills, G.; Yee, H.; Hoffmann, M. R. J. Chem. Phys. 1992, 96, 5546 https://doi.org/10.1021/j100192a067
  9. Kanemoto, M.; Shiragami, T.; Pac, C.; Yanagida, S. J. Phys. Chem. 1992, 96, 3521 https://doi.org/10.1021/j100187a062
  10. Dabbousi, B. O.; Bawendi, M. G.; Onitsuka, B. O.; Rubner, M. F. Appl. Phys. Lett. 1995, 66, 11
  11. Hwang, J. M.; Oh, M. O.; Kim, I.; Lee, J. K.; Ha, C.-S. Curr. Appl. Phys. 2005, 5, 31 https://doi.org/10.1016/j.cap.2003.11.075
  12. Yu, S. H.; Wu, Y. S.; Yang, J. Chem. Mater. 1998, 9, 2312
  13. Gerion, D.; Pinaud, F.; Williams, S. C.; Parak, W. J.; Zanchet, D.; Weiss, S.; Alivisatos, A. P. J. Phys. Chem. B 2001, 195, 8861
  14. Jun, Y. W.; Jang, J. T.; Cheon, J. W. Bull. Kor. Chem. Soc. 2006, 27, 961 https://doi.org/10.5012/bkcs.2006.27.7.961
  15. Chen, C. C.; Yet, C. P.; Wang, H. N.; Chao, C. Y. Langmuir 1999, 15, 6845 https://doi.org/10.1021/la990165p
  16. Mitchell, G. P.; Mirkin, C. A.; Letsinger, R. L. J. Am. Chem. Soc. 1999, 121, 8122 https://doi.org/10.1021/ja991662v
  17. Kho, R.; Nguyen, L.; Torres-Martinez, C. L.; Mehra, R. K. Biochem. Biophys. Res. Commun. 2000, 272, 29
  18. Bae, W.; Mehra, R. K. J. Inorg. Biochem. 1998, 70, 125 https://doi.org/10.1016/S0162-0134(98)10008-9
  19. Bhargava, R. N.; Gallagher, D. Phys. Rev. Lett. 1994, 72, 416 https://doi.org/10.1103/PhysRevLett.72.416
  20. Yi, G.; Sun, B.; Yang, F.; Chen, D. J. Mater. Chem. 2001, 11, 2928 https://doi.org/10.1039/b108394e
  21. Hwang, C. S.; Lee, N. R.; Kim, Y. A.; Park, Y. B. Bull. Kor. Chem. Soc. 2006, 27, 1809 https://doi.org/10.5012/bkcs.2006.27.11.1809
  22. Williams, A. T. R.; Winfield, S. A.; Miller, J. N. Analyst 1983, 108, 1067 https://doi.org/10.1039/an9830801067
  23. Melhuish, W. H. J. Phys. Chem. 1961, 65, 229 https://doi.org/10.1021/j100820a009
  24. Tata, M.; Banerjee, S.; John, V. T.; Waguespack, Y.; Mcpherson, G. Coll. Surf. A Phys. Chem. and Eng. Asp. 1997, 127, 39 https://doi.org/10.1016/S0927-7757(96)03968-4
  25. Kushida, T.; Tanak, Y.; Oka, Y. Sol. Stat. Commun. 1974, 14, 617 https://doi.org/10.1016/0038-1098(74)91024-2
  26. Zhuang, J.; Zhang, X.; Wang, G.; Li, D.; Yang, W.; Li, T. J. Mater. Chem. 2003, 13, 1853 https://doi.org/10.1039/b303287f
  27. Moszczenski, C. W.; Hooper, R. J. Inorg. Chim. Acta 1983, 70, 71 https://doi.org/10.1016/S0020-1693(00)82780-2
  28. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, 5th Ed.; Wiley: 1997; p 59
  29. Pandiarajan, S.; Umadevi, M.; Rajaran, R. K.; Ramakrishinan, V. J. Spectrochim. Acta A 2005, 62, 630 https://doi.org/10.1016/j.saa.2005.02.008
  30. Pawlukojic, A.; Leciejewicz, J.; Ramirez-Cuesta, A. J.; Nowicka- Sciebe, J. Spectrochim. Acta A 2005, 61, 2474 https://doi.org/10.1016/j.saa.2004.09.012

Cited by

  1. via Aqueous Linker-Assisted Assembly: Influence of Molecular Linkers on Electronic Properties and Interfacial Electron Transfer vol.3, pp.11, 2011, https://doi.org/10.1021/am200900c
  2. Synthesizing cysteine-coated magnetite nanoparticles as MRI contrast agent: Effect of pH and cysteine addition on particles size distribution vol.30, pp.4, 2012, https://doi.org/10.2478/s13536-012-0048-6
  3. Syntheses and Characterizations of Serine and Threonine Capped Water-Dispersible ZnS:Mn Nanocrystals and Comparison Study of Toxicity Effects on the growth of E. coli by the Methionine, Serine, Threonine, and Valine Capped ZnS:Mn Nanocrystals vol.33, pp.5, 2012, https://doi.org/10.5012/bkcs.2012.33.5.1741
  4. bacteria vol.28, pp.4, 2013, https://doi.org/10.1002/bio.2477
  5. Syntheses of Biologically Non-Toxic ZnS:Mn Nanocrystals by Surface Capping with O-(2-aminoethyl)polyethylene Glycol and O-(2-carboxyethyl)polyethylene Glycol Molecules vol.34, pp.4, 2013, https://doi.org/10.5012/bkcs.2013.34.4.1181
  6. Biological Toxicities and Aggregation Effects of ʟ-Glycine and ʟ-Alanine Capped ZnS:Mn Nanocrystals in Aqueous Solution vol.35, pp.4, 2014, https://doi.org/10.5012/bkcs.2014.35.4.1169
  7. Surface Properties and Photocatalytic Activities of the Colloidal ZnS:Mn Nanocrystals Prepared at Various pH Conditions vol.5, pp.4, 2015, https://doi.org/10.3390/nano5041955
  8. Thermo-Optical Properties of Amino Acid Modified ZnO-PVA Colloidal Suspension Under CW Laser Illumination vol.362, pp.1, 2016, https://doi.org/10.1002/masy.201500010
  9. Application of L-Aspartic Acid-Capped ZnS:Mn Colloidal Nanocrystals as a Photosensor for the Detection of Copper (II) Ions in Aqueous Solution vol.6, pp.5, 2016, https://doi.org/10.3390/nano6050082
  10. Production of highly dispersed sodium chloride: Strategy and experiment vol.89, pp.6, 2016, https://doi.org/10.1134/S1070427216060021
  11. Synthesis and study of catalytic application of l-methionine protected gold nanoparticles vol.7, pp.7, 2017, https://doi.org/10.1007/s13204-017-0587-6
  12. Photosensor Activities of Cysteamine-Capped ZnS:Mn Nanocrystals in the Direct Detection of Nitrite Ions by Fluorescence Quenching in Aqueous Solutions vol.72, pp.3, 2018, https://doi.org/10.3938/jkps.72.424
  13. Synthesis of Tobramycin Stabilized Silver Nanoparticles and Its Catalytic and Antibacterial Activity Against Pathogenic Bacteria pp.1574-1451, 2018, https://doi.org/10.1007/s10904-018-0971-z
  14. Synthesis of nano-sized zeolite-Y functionalized with 5-amino-3-thiomethyl 1H-pyrazole-4-carbonitrile for effective Fe(III)-chelating strategy vol.44, pp.9, 2018, https://doi.org/10.1007/s11164-018-3418-9
  15. Interference free detection for small molecules: Probing the Mn2+-doped effect and cysteine capped effect on the ZnS nanoparticles for coccidiostats and peptide analysis in SALDI-TOF MS vol.135, pp.5, 2010, https://doi.org/10.1039/b919359f
  16. Reaction Temperature Dependent Formations of the Zero- and One-Dimensional ZnS:Mn Nanocrystals vol.29, pp.2, 2007, https://doi.org/10.5012/bkcs.2008.29.2.467
  17. Photoelectrochemical Deposition of CdZnSe Thin Films on the Se-Modified Au Electrode vol.29, pp.5, 2007, https://doi.org/10.5012/bkcs.2008.29.5.939
  18. Valine 및 Alanine 분자로 표면 처리된 수용성의 ZnS 나노입자의 합성 및 특성연구 vol.53, pp.5, 2007, https://doi.org/10.5012/jkcs.2009.53.5.505
  19. Fabrication of 50 to 1000 nm Monodisperse ZnS Colloids vol.30, pp.1, 2007, https://doi.org/10.5012/bkcs.2009.30.1.129
  20. Syntheses and Optical Characterizations of ZnS:Mn Nanocrystals Capped by Polyethylene Oxide Molecules of Varying Molecular Weights vol.31, pp.12, 2007, https://doi.org/10.5012/bkcs.2010.31.12.3834
  21. Size-Selective Growth and Stabilization of Small CdSe Nanoparticles in Aqueous Solution vol.4, pp.1, 2010, https://doi.org/10.1021/nn901570m
  22. EDTA Surface Capped Water-Dispersible ZnSe and ZnS:Mn Nanocrystals vol.31, pp.7, 2010, https://doi.org/10.5012/bkcs.2010.31.7.1997
  23. Differential Effects of Cysteine and Histidine-Capped ZnS:Mn Nanocrystals on Escherichia coli and Human Cells vol.32, pp.1, 2007, https://doi.org/10.5012/bkcs.2011.32.1.53
  24. Differential Effects of Cysteine and Histidine-Capped ZnS:Mn Nanocrystals on Escherichia coli and Human Cells vol.32, pp.1, 2007, https://doi.org/10.5012/bkcs.2011.32.1.53
  25. White Light Emission from a Colloidal Mixture Containing ZnS Based Nanocrystals: ZnS, ZnS:Cu and ZnS:Mn vol.35, pp.1, 2007, https://doi.org/10.5012/bkcs.2014.35.1.189
  26. Green synthesis of zinc sulfide (ZnS) nanoparticles using Stevia rebaudiana Bertoni and evaluation of its cytotoxic properties vol.1175, pp.None, 2007, https://doi.org/10.1016/j.molstruc.2018.07.103
  27. Highly luminescent ZnS:Mn quantum dots capped with aloe vera extract vol.323, pp.None, 2007, https://doi.org/10.1016/j.ssc.2020.114106