References
- Weller, H. Angew. Chem. Int. Ed. Engl. 1993, 32, 41 https://doi.org/10.1002/anie.199300411
- Bol, A. A.; Meuijernk, A. Phys. Rev. B 1998, 24, 58
- Alivisatos, A. P. J. Phys. Chem. 1996, 100, 13226 https://doi.org/10.1021/jp9535506
- Brus, L. E. Appl. Phys. A: Solid Surf. 1991, 53, 465 https://doi.org/10.1007/BF00331535
- Milliron, D. J.; Alivisatos, A. P.; Pitois, C.; Edder, C.; Frechet, J. M. J. Adv. Mater. 2003, 15, 58 https://doi.org/10.1002/adma.200390011
- Jaiswal, J. K.; Mattoussi, H.; Mauro, J. M.; Simon, S. M. Nature Biotechnol. 2002, 21, 47 https://doi.org/10.1038/nbt767
- Heath, J. R. Acc. Chem. Res. 1999, 32
- Hoffman, A. J.; Mills, G.; Yee, H.; Hoffmann, M. R. J. Chem. Phys. 1992, 96, 5546 https://doi.org/10.1021/j100192a067
- Kanemoto, M.; Shiragami, T.; Pac, C.; Yanagida, S. J. Phys. Chem. 1992, 96, 3521 https://doi.org/10.1021/j100187a062
- Dabbousi, B. O.; Bawendi, M. G.; Onitsuka, B. O.; Rubner, M. F. Appl. Phys. Lett. 1995, 66, 11
- Hwang, J. M.; Oh, M. O.; Kim, I.; Lee, J. K.; Ha, C.-S. Curr. Appl. Phys. 2005, 5, 31 https://doi.org/10.1016/j.cap.2003.11.075
- Yu, S. H.; Wu, Y. S.; Yang, J. Chem. Mater. 1998, 9, 2312
- Gerion, D.; Pinaud, F.; Williams, S. C.; Parak, W. J.; Zanchet, D.; Weiss, S.; Alivisatos, A. P. J. Phys. Chem. B 2001, 195, 8861
- Jun, Y. W.; Jang, J. T.; Cheon, J. W. Bull. Kor. Chem. Soc. 2006, 27, 961 https://doi.org/10.5012/bkcs.2006.27.7.961
- Chen, C. C.; Yet, C. P.; Wang, H. N.; Chao, C. Y. Langmuir 1999, 15, 6845 https://doi.org/10.1021/la990165p
- Mitchell, G. P.; Mirkin, C. A.; Letsinger, R. L. J. Am. Chem. Soc. 1999, 121, 8122 https://doi.org/10.1021/ja991662v
- Kho, R.; Nguyen, L.; Torres-Martinez, C. L.; Mehra, R. K. Biochem. Biophys. Res. Commun. 2000, 272, 29
- Bae, W.; Mehra, R. K. J. Inorg. Biochem. 1998, 70, 125 https://doi.org/10.1016/S0162-0134(98)10008-9
- Bhargava, R. N.; Gallagher, D. Phys. Rev. Lett. 1994, 72, 416 https://doi.org/10.1103/PhysRevLett.72.416
- Yi, G.; Sun, B.; Yang, F.; Chen, D. J. Mater. Chem. 2001, 11, 2928 https://doi.org/10.1039/b108394e
- Hwang, C. S.; Lee, N. R.; Kim, Y. A.; Park, Y. B. Bull. Kor. Chem. Soc. 2006, 27, 1809 https://doi.org/10.5012/bkcs.2006.27.11.1809
- Williams, A. T. R.; Winfield, S. A.; Miller, J. N. Analyst 1983, 108, 1067 https://doi.org/10.1039/an9830801067
- Melhuish, W. H. J. Phys. Chem. 1961, 65, 229 https://doi.org/10.1021/j100820a009
- Tata, M.; Banerjee, S.; John, V. T.; Waguespack, Y.; Mcpherson, G. Coll. Surf. A Phys. Chem. and Eng. Asp. 1997, 127, 39 https://doi.org/10.1016/S0927-7757(96)03968-4
- Kushida, T.; Tanak, Y.; Oka, Y. Sol. Stat. Commun. 1974, 14, 617 https://doi.org/10.1016/0038-1098(74)91024-2
- Zhuang, J.; Zhang, X.; Wang, G.; Li, D.; Yang, W.; Li, T. J. Mater. Chem. 2003, 13, 1853 https://doi.org/10.1039/b303287f
- Moszczenski, C. W.; Hooper, R. J. Inorg. Chim. Acta 1983, 70, 71 https://doi.org/10.1016/S0020-1693(00)82780-2
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, 5th Ed.; Wiley: 1997; p 59
- Pandiarajan, S.; Umadevi, M.; Rajaran, R. K.; Ramakrishinan, V. J. Spectrochim. Acta A 2005, 62, 630 https://doi.org/10.1016/j.saa.2005.02.008
- Pawlukojic, A.; Leciejewicz, J.; Ramirez-Cuesta, A. J.; Nowicka- Sciebe, J. Spectrochim. Acta A 2005, 61, 2474 https://doi.org/10.1016/j.saa.2004.09.012
Cited by
- via Aqueous Linker-Assisted Assembly: Influence of Molecular Linkers on Electronic Properties and Interfacial Electron Transfer vol.3, pp.11, 2011, https://doi.org/10.1021/am200900c
- Synthesizing cysteine-coated magnetite nanoparticles as MRI contrast agent: Effect of pH and cysteine addition on particles size distribution vol.30, pp.4, 2012, https://doi.org/10.2478/s13536-012-0048-6
- Syntheses and Characterizations of Serine and Threonine Capped Water-Dispersible ZnS:Mn Nanocrystals and Comparison Study of Toxicity Effects on the growth of E. coli by the Methionine, Serine, Threonine, and Valine Capped ZnS:Mn Nanocrystals vol.33, pp.5, 2012, https://doi.org/10.5012/bkcs.2012.33.5.1741
- bacteria vol.28, pp.4, 2013, https://doi.org/10.1002/bio.2477
- Syntheses of Biologically Non-Toxic ZnS:Mn Nanocrystals by Surface Capping with O-(2-aminoethyl)polyethylene Glycol and O-(2-carboxyethyl)polyethylene Glycol Molecules vol.34, pp.4, 2013, https://doi.org/10.5012/bkcs.2013.34.4.1181
- Biological Toxicities and Aggregation Effects of ʟ-Glycine and ʟ-Alanine Capped ZnS:Mn Nanocrystals in Aqueous Solution vol.35, pp.4, 2014, https://doi.org/10.5012/bkcs.2014.35.4.1169
- Surface Properties and Photocatalytic Activities of the Colloidal ZnS:Mn Nanocrystals Prepared at Various pH Conditions vol.5, pp.4, 2015, https://doi.org/10.3390/nano5041955
- Thermo-Optical Properties of Amino Acid Modified ZnO-PVA Colloidal Suspension Under CW Laser Illumination vol.362, pp.1, 2016, https://doi.org/10.1002/masy.201500010
- Application of L-Aspartic Acid-Capped ZnS:Mn Colloidal Nanocrystals as a Photosensor for the Detection of Copper (II) Ions in Aqueous Solution vol.6, pp.5, 2016, https://doi.org/10.3390/nano6050082
- Production of highly dispersed sodium chloride: Strategy and experiment vol.89, pp.6, 2016, https://doi.org/10.1134/S1070427216060021
- Synthesis and study of catalytic application of l-methionine protected gold nanoparticles vol.7, pp.7, 2017, https://doi.org/10.1007/s13204-017-0587-6
- Photosensor Activities of Cysteamine-Capped ZnS:Mn Nanocrystals in the Direct Detection of Nitrite Ions by Fluorescence Quenching in Aqueous Solutions vol.72, pp.3, 2018, https://doi.org/10.3938/jkps.72.424
- Synthesis of Tobramycin Stabilized Silver Nanoparticles and Its Catalytic and Antibacterial Activity Against Pathogenic Bacteria pp.1574-1451, 2018, https://doi.org/10.1007/s10904-018-0971-z
- Synthesis of nano-sized zeolite-Y functionalized with 5-amino-3-thiomethyl 1H-pyrazole-4-carbonitrile for effective Fe(III)-chelating strategy vol.44, pp.9, 2018, https://doi.org/10.1007/s11164-018-3418-9
- Interference free detection for small molecules: Probing the Mn2+-doped effect and cysteine capped effect on the ZnS nanoparticles for coccidiostats and peptide analysis in SALDI-TOF MS vol.135, pp.5, 2010, https://doi.org/10.1039/b919359f
- Reaction Temperature Dependent Formations of the Zero- and One-Dimensional ZnS:Mn Nanocrystals vol.29, pp.2, 2007, https://doi.org/10.5012/bkcs.2008.29.2.467
- Photoelectrochemical Deposition of CdZnSe Thin Films on the Se-Modified Au Electrode vol.29, pp.5, 2007, https://doi.org/10.5012/bkcs.2008.29.5.939
- Valine 및 Alanine 분자로 표면 처리된 수용성의 ZnS 나노입자의 합성 및 특성연구 vol.53, pp.5, 2007, https://doi.org/10.5012/jkcs.2009.53.5.505
- Fabrication of 50 to 1000 nm Monodisperse ZnS Colloids vol.30, pp.1, 2007, https://doi.org/10.5012/bkcs.2009.30.1.129
- Syntheses and Optical Characterizations of ZnS:Mn Nanocrystals Capped by Polyethylene Oxide Molecules of Varying Molecular Weights vol.31, pp.12, 2007, https://doi.org/10.5012/bkcs.2010.31.12.3834
- Size-Selective Growth and Stabilization of Small CdSe Nanoparticles in Aqueous Solution vol.4, pp.1, 2010, https://doi.org/10.1021/nn901570m
- EDTA Surface Capped Water-Dispersible ZnSe and ZnS:Mn Nanocrystals vol.31, pp.7, 2010, https://doi.org/10.5012/bkcs.2010.31.7.1997
- Differential Effects of Cysteine and Histidine-Capped ZnS:Mn Nanocrystals on Escherichia coli and Human Cells vol.32, pp.1, 2007, https://doi.org/10.5012/bkcs.2011.32.1.53
- Differential Effects of Cysteine and Histidine-Capped ZnS:Mn Nanocrystals on Escherichia coli and Human Cells vol.32, pp.1, 2007, https://doi.org/10.5012/bkcs.2011.32.1.53
- White Light Emission from a Colloidal Mixture Containing ZnS Based Nanocrystals: ZnS, ZnS:Cu and ZnS:Mn vol.35, pp.1, 2007, https://doi.org/10.5012/bkcs.2014.35.1.189
- Green synthesis of zinc sulfide (ZnS) nanoparticles using Stevia rebaudiana Bertoni and evaluation of its cytotoxic properties vol.1175, pp.None, 2007, https://doi.org/10.1016/j.molstruc.2018.07.103
- Highly luminescent ZnS:Mn quantum dots capped with aloe vera extract vol.323, pp.None, 2007, https://doi.org/10.1016/j.ssc.2020.114106