• Title/Summary/Keyword: Water-borne acrylic emulsion

Search Result 5, Processing Time 0.021 seconds

Study on Synthesis and Adhesion Properties of Water-based Acrylic Tackifier According to the Content of Chain Transfer Agent (분자량 조절제의 함량에 따른 수계 아크릴 점착부여제의 합성 및 점착 특성 연구)

  • Baek, Lan-Ji;Jeong, Boo-Young;Kim, Se-Jin;Huh, PilHo;Cheon, Jungmi;Chun, Jae-Hwan
    • Journal of Adhesion and Interface
    • /
    • v.23 no.3
    • /
    • pp.80-86
    • /
    • 2022
  • In this study, water-based acrylic tackifier with different contents of 1-dodecanethiol(n-DM), a chain transfer agent(CTA), were synthesized to improve the performance and adhesive properties of water-based acrylic pressure sensitive adhesive(PSA). In order to investigate the change in physical properties according to the amount of water-based acrylic tackifier added, 10/20/30 phr of water-based acrylic tackifier was added to the water-borne acrylic emulsion to measure the physical properties. The molecular weight and glass transition temperature(Tg) of the synthesized water-based acrylic tackifier tended to decrease as the content of n-DM increased. When a water-based acrylic tackifier was added to the water-borne acrylic emulsion, the peel strength and heat-resistance were increased. Also, when the water-based acrylic tackifiers were added at 10 phr or 20 phr, the best value was shown.

Studies on Synthesis of Acrylic Water Borne Polymer;Synthesis of Poly(vinyl acetate) and Poly(vinyl acetate-co-2-ethylhexyl acrylate) (Aerylic Water Borne Polymer의 합성 연구;Poly(vinyl acetate)와 poly(vinyl acetate-co-2-ethylhexyl acrylate)의 합성 연구)

  • Kim, Sang-Hern
    • Journal of the Korean Applied Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.77-84
    • /
    • 1996
  • Poly(vinyl acetate)와 poly(vinyl acetate-co-2-ethylhexyl acrylate)를 여러 조건에서 semicontinuous emulsion 중합으로 합성하였다. Overall conversion, emulsion 입자크기, pH, 점도 등을 합성한 두 emulsion polymer에 대해 측정하였다. Vinyl acetate monomer에 2-ethylhexyl acrylate를 도입함으로서 emulsion 입도, 점도, 중합 속도, 유리 전이 속도가 감소함을 확인하였다.

Resistant Properties of Water-Borne Acrylic Pressure Sensitive Adhesives for Automobile Protection (자동차 보호용 수계형 아크릴 점착제의 내성)

  • Hahm, Hyun-Sik;Kwak, Yun-Chul;Hwang, Jae-Young;Ahn, Sung-Hwan;Kim, Myung-Soo;Park, Hong-Soo;Yoon, Cheol-Hun;Sung, Ki-Chun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.289-297
    • /
    • 2005
  • In order to improve resistant properties of water-borne acrylic pressure sensitive adhesives(PSAs) for automobiles, this study was carried out. Removable PSAs for automobiles were synthesized by emulsion polymerization of monomers, n-butyl acrylate(BA), n-butyl methacrylate(BMA), acrylonitrile(AN), acrylic acid(AA) and 2-hydroxyethyl methacrylate(2-HEMA), and AA and 2-HEMA could act as functional monomers for crosslink. Emulsion polymerization was carried out in a semi-batch type reactor. Water resistance, heat resistance, acid resistance, alkali resistance and smoke resistance were examined. As a result, water resistance increased with the amount of BMA, however, the effect of BMA content on the water resistance was insignificant at a range of over 14 wt%. The water resistance also increased with the amount of functional monomers, AA and 2-HEMA. The prepared PSAs satisfied all the standard for automobiles except heat resistance. However, the heat resistance comes nearly up to the standard. Also, acid resistance, alkali resistance and smoke resistance of the prepared PSAs satisfied with the standard.

Synthesis and Adhesion Characteristics of Water-Borne Acrylic Pressure Sensitive Adhesives(PSAs) (수계형 아크릴 점착제의 합성 및 점착 특성)

  • Hahm, Hyun-Sik;Kwak, Yun-Chul;Hwang, Jae-Young;Ahn, Sung-Hwan;Kim, Myung-Soo;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.191-199
    • /
    • 2005
  • Removable protective adhesives for automobiles were synthesized by an emulsion polymerization of monomers such as n-butyl acrylate (BA), n-butyl methacrylate (BMA), acrylonitrile (AN), acrylic acid (AA) and 2-hydroxyethyl methacrylate (2-HEMA), in which AA and 2-HEMA were functional monomers. Potassium persulfate (KPS) was used as an initiator and sodium lauryl sulfate (SLS) was used as an emulsifier, and polyvinyl alcohol (PVA) was used as a stabilizer. Emulsion polymerization was carried out in a semi-batch type reactor. Tensile strength, extension, peel strength, viscosity and solid content of the synthesized adhesives were tested. The optimum physical properties of the removable protective adhesives for automobiles were obtained with the composition of 0.43 mole BA, 0.57 mole AN, 0.21 mole BMA, 0.03 mole AA, and 0.03 mole 2-HEMA.

Study on Polymerization Condition of Water-based Acrylic Adhesion (수분산성 아크릴계 점착제 중합 조건에 관한 연구)

  • Lee, Haeng Ja;Jang, Suk Hee;Chang, Sang Mok;Kim, Jong Min
    • Korean Chemical Engineering Research
    • /
    • v.48 no.5
    • /
    • pp.609-614
    • /
    • 2010
  • In this study, emulsion polymerizations for synthesizing acrylic pressure-sensitive adhesive(PSA) were carried out using 2-ethylhexyl acrylate(2-EHA), n-butyl acrylate(n-BA), methyl metacrylate(MMA) as fundamental monomers and acrylic acid(AAc) as a functional monomer in the presence of anionic SLS (sodium lauryl sulfate). To obtain the optimized synthetic condition in the polymerization, we analyzed the polymerization variables such as the effect of surfactant concentration and hydrophilic lipophilic values(HLB). At the same time, the final adhesive properties were also analyzed by the function of the initiator concentration and buffer concentration. In the results, the most stable emulsion was obtained at the surfactant concentrations between 3 and 5 wt%. It was also determined the effect of HLB value of nonionic surfactant and the initiator concentrations on the gel content. Stable emulsion is obtained using the surfactant having HLB value of 12.3. The rate of emulsion polymerization was increased at the initiator concentration greater than 1 wt%, but the stability of the emulsion was decreased. Finally, the effect of the buffer concentrations on the pH and the conversion of the acrylic emulsion product were experimentally measured. At the sodium bicarbonate concentration above 0.4 wt%, the buffer infulence was apparent. The buffer effect was fully acceptable at the concentrations between 0.6 and 0.8 wt% regardless of the monomer composition.