• Title/Summary/Keyword: Water-assisted

Search Result 285, Processing Time 0.036 seconds

A study on the solar assisted heating system with refrigerant as working fluid (냉매를 작동유체로 사용하는 태양열 난방시스템에 관한 연구)

  • Kim, Ji-Young;Ko, Gawng-Soo;Park, Youn-Cheol
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.4
    • /
    • pp.37-44
    • /
    • 2005
  • An experimental study was conducted to analyze performance of a heating system with variation of control logic of the system. The system uses a solar as heat source and composed with heat pump that uses R-22 as working fluid. The difference between the developed system and the commercially available heating system is working fluid. The solar assisted heating system which was widely distributed in the market uses water as a working fluid. It could be freezing in case of the temperature drops down under freezing point. The anti-freezing fluids such as methyl-alcohol or ethylene-glycol are mixed with the water to protect the freezing phenomena. However, the system developed in this study uses a refrigerant as a working fluid. It makes the system to run under zero degree temperature conditions. Another difference of the developed system compare with commercial available one is auxiliary heating method. The developed system has removed an auxiliary electric heater that has been used in conventional solar assisted heating system. Instead of the auxiliary electric heater, an air source heat exchanger which generally used as an evaporator of a heat pump was adapted as a backup heating device of the developed system. As results, an efficiency of the developed system is higher than a solar assisted heat pump with auxiliary electric heater. The merit of the developed system is on the performance increment when the system operates at a lower solar energy climate conditions. In case of the developed system operates at a normal condition, COP of the solar collector driven heat pump is higher than the air source heat exchanger driven heat pump's.

Carrier Gas Assisted Solvent Vapor Treatment for Surface Nanostructuring of Molecular Thin Films

  • Gong, Hye-Jin;Kim, Jin-Hyun;Yim, Sang-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.825-827
    • /
    • 2012
  • In this study, the variation in surface morphology of copper phthalocyanine (CuPc) thin films treated with a flow of acetone vapor assisted by nitrogen carrier gas was investigated. The CuPc nanorods with similar dimensions were well dispersed throughout the whole film surfaces after ~20 min. of treatment. However, the electronic absorption spectra only changed slightly, which indicates that molecular stacking was not altered during treatment. This treating method is simple and more advantageous compared to other solvent treating technologies such as mixed solvent spray treatment using organic solvents and water since it requires relatively mild treating conditions and does not need the presence of water.

Photoelectrochemical characterization of surface-modified CuInS2 nanorod arrays prepared via template-assisted growth and transfer

  • Yang, Wooseok;Kim, Jimin;Oh, Yunjung;Moon, Jooho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.401-401
    • /
    • 2016
  • Although vertically aligned one-dimensional (1D) structure has been considered as efficient forms for photoelectrode, development of efficient 1D nanostructured photocathode are still required. In this sense, we recently demonstrated a simple fabrication route for CuInS2 (CIS) nanorod arrays from aqueous solution by template-assisted growth-and-transfer method and their feasibility as a photoelectrode for water splitting. In this study, we further evaluated the photoelectrochemical properties surface-modified CIS nanorod arrays. Surface modification with CdS and ZnS was performed by successive ion layer adsorption and reaction (SILAR) method, which is well known as suitable technique for conformal coating throughout nanoporous structure. With surface modification of CdS and ZnS, both photoelectrochemical performance and stability of CuInS2 nanorod arrays were improved by shifting of the flat-band potential, which was analyzed both onset potential and Mott-schottky plot.

  • PDF

Low Temperature Growth of Multi-walled Carbon Nanotubes by Water-assisted Chemical Vapor Deposition (물 첨가된 열 화학 기상 증착법을 이용한 다중벽 탄소나노튜브의 저온 합성)

  • Kim, Young-Rae;Jeon, Hong-Jun;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.430-430
    • /
    • 2008
  • 열화학기상 증착법으로 2원계 합금인 Invar 36(63wt% Fe, 37wt% Ni)을 이용하여 다중벽 탄소나노튜브를 360도의 저온에서 까지 합성이 가능함을 확인하였다. 촉매와 Si 기판과의 silicide형성을 막기 위한 Ti층의 두께가 증가함에 따라서 탄소나노튜브의 길이가 잘 자라는 것을 확인하였으며, 미량의 물이 첨가 되었을 경우 탄소나노튜브의 길이 성장에 큰 변화가 있음을 확인하였다. 또한 물을 포함하는 실험에서는 촉매인 Invar36의 두께가 0.5 nm 일 때에 비하여 0.25 nm 두께에서 물에 대한 영향이 더 크게 나타남을 SEM 사진을 통해 확인할 수 있었다.

  • PDF

Effect of Microwave Assisted Water Extraction on Insoluble Phenolic Compounds through Bioactivity of Fagopyrum esculentum

  • Kim, Hyun Gi;Kim, Yong Ju;Lian, Thang Tung;Song, Sueng Yeob;Bang, Kuek Soo
    • Korean Journal of Plant Resources
    • /
    • v.32 no.6
    • /
    • pp.723-729
    • /
    • 2019
  • Fagopyrum esculentum (Buckwheat) is a globally used alternative crop that contains several useful substances with various effects; however, many of these substances (rutin, quercetin, etc.) are water insoluble. To extract these substances, alcohols is required, which is inconvenient because these solvents cause diverse problems. Many studies are underway to achieve effective extraction of these substances with water. Among of these studies, microwave assisted water extraction (MAE) has been performed extensively. In this study, we performed the extraction in various solvents and/or microwave from Fagopyrum esculentum. The analysis of the content of useful substances and the bioactivity were performed and shown to increase in MAE. Liquid chromatography-mass was performed in order to identify of the useful water-insoluble substances. Catechin, quercetin, and rutin, which are all insoluble in water, were hardly extracted with water even on heating (4.4 ppb, 3.9 ppb and 60.3 ppb, respectively). However, MAE was found to extract much more of these substances than water (1204 ppb, 110.8 ppb and 2946 ppb, respectively). Although less efficient than alcohols, MAE showed much higher efficiency than simple water extraction. These results indicate that water extraction using microwave technology is effective in cases where it is difficult to extract useful substances using water.

Improvement of Adhesion Between metal and Polymer by Ion Assisted Reaction (IAR) (이온 보조 반응법을 이용한 금속과 고분자의 접착력 향상)

  • 최성창;김현주;고석근
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.3
    • /
    • pp.221-228
    • /
    • 1998
  • Enhancement of adhesion between polymer films and metal films are obtained by forming the hydrophilic functional groups on the polymer surfaces by ion assisted reaction which uses ion beam in reactive gas environments. In ion assisted reaction, ion dose, blown gas flow rate and ion energy were changed from $5\times 10^{14}$ to $1\times 10^{17}\textrm{ions/cm}^2$, from 0 to 8 sccm, and 0.3 to 1.2 kV, respectively. Wetting angle of water on polymer films modified by $ Ar^+$ ion without blowing oxygen decreases to ~$40^{\circ}$. Contact angle of water on polymer films modified by $ Ar^+$ ion with blowing oxygen decreases to ~$20^{\circ}$, and the surface free energy increases to ~70 dyne/$\textrm{cm}^2$. However, contact angle of water on polytetraflouroethylene (PTFE) modified by ion assisted reaction increases with ion dose. The adhesion strength of metal film deposited on the polymer surface was investigated. In the case of the metal film deposited on the untreated polymers, the metal films are detached from the polymer surface. While, In the case of the metal film deposited on the polymers treated by ion assisted reaction, the metal films are strongly adhere to the polymer surfaces.

  • PDF

Microwave-Assisted Extraction of Effective Constituents from Ginseng (마이크로파를 이용한 인삼으로부터 유효성분의 추출)

  • Lee, Dong-Won;Park, Young-Sin;Kim, Dok-Chan
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.427-433
    • /
    • 2005
  • The use of the microwave-assisted process for the extraction of effective constituents from ginseng was investigated at various operating conditions. The influence of solvent (ethanol-water, 50% v/v) to ginseng ratio, particle size and applied microwave power on the efficiency of extraction was examined. The microwave extraction system used was custom manufactured so that the intensity of microwave may be varied by using anode-voltage controller. It was found that the ratio of 6 : 1 (vol/mass) gave a good extraction efficiency. Small particle size gave high yield but it caused difficulties in the separation of solvent from the sludge. The higher power was no guarantee of the efficient extraction yield. The more important factor than the employed power was the adequate temperature under sufficient contact time. Using deionized-water as swelling agent, the degree of swelling of ginseng by microwave heating and conventional heating in water-bath was also studied. It was observed that the microwave heating enhanced the swelling much more than the conventional heating. It is believed that this enhanced swelling was responsible for the rapid microwave-assisted extraction rate.

Statistical Optimization of Antioxidant Extraction from Broussonetia kazinoki Using Ultrasound-assisted Extraction (초음파 추출공정을 이용한 닥나무로부터 항산화성분의 추출공정 최적화)

  • Lee, Seung Bum;Park, Bo Ra;Yoo, Bong-Ho
    • Applied Chemistry for Engineering
    • /
    • v.29 no.5
    • /
    • pp.565-570
    • /
    • 2018
  • In this study, the antioxidant was extracted from Broussonetia kazinokii using ultrasound-assisted extraction (UAE) and optimized by using a response surface methodology. The response value of the central composite design model establishes the extraction yield and the DPPH radical scavenging activity. The extraction time and temperature and volume ratio of ethanol/ultrapure water were selected as quantitative factors. When considering both the main and interaction effects, the factor having the greatest influence on the extraction yield and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity was the volume ratio of ethanol/ultrapure water. The results of optimal extraction conditions were the extraction time (19.92 min), volume ratio of ethanol/ultrapure water (54.23%), and ultrasonic irradiation power (557.65 W). We could also obtained expected results of the yield = 38.93 wt% and DPPH radical scavenging activity = 55.33% under these conditions.

Functional Activities of Microwave-Assisted Extracts from Lyophyllum ulmarium (마이크로웨이브 추출공정에 의한 만가닥버섯의 기능적 특성)

  • 김현구;최윤정;정승원;김공환
    • Food Science and Preservation
    • /
    • v.9 no.4
    • /
    • pp.385-390
    • /
    • 2002
  • Functional activities of Lyophyllum ulmarium microwave-assisted extracts under different conditions including electron donating ability, tyrosinase inhibition activity and nitrite scavenging effect were examined. Total polyphenol content increased as increasing microwave power up to 90 W in the water extracts. Electron donating ability increased with microwave power up to 90 W in 50% ethanol extract and 99% ethanol extract. Tyrosinase inhibition activity and nitrite scavenging effect in the extract increased as microwave power increased during extraction. Total polyphenol content increased as extending extraction time up to 5 min in the water extract. But the highest electron donating ability and tyrosinase inhibition activity was obtained after 10 min extraction. Significantly higher total polyphenol content and electron donating ability were found in the water extract whereas greater tyrosinase inhibition activity and nitrite scavenging effect were observed in 99% ethanol extract. The maxium nitrite scavenging effect was found at pH 1.2 and decreased as pH increased.

Antioxidant Activity, Macamide B Content and Muscle Cell Protection of Maca (Lepidium meyenii) Extracted Using Ultrasonification-Assisted Extraction

  • Buyanbadrakh, Enkhbolor;Hong, Hyeong-Suk;Lee, Kang-Woo;Huang, Wen Yan;Oh, Jun-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.2
    • /
    • pp.129-137
    • /
    • 2020
  • This study aims to evaluate the efficacy of the Ultrasonication-Assisted (UA) extraction on the functionality of the herbaceous biennial plant maca (Lepidium meyenii). The specific objectives include comparison of the antioxidant activities among various maca extracts, determination of the macamide B content of the extracts, and in vitro evaluation of maca on cell viability and creatine kinase (CK) activity. The antioxidant activities of the water, ethanol, and UA extracts were compared by determining the total phenolic and flavonoid contents, the 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activities, and the ferric reducing antioxidant power (FRAP) of the extracts. The macamide B content of maca extracts were analyzed by HPLC. The effects of the extracts on muscle cell viability and creatine kinase activity were also determined using C2C12 myoblasts. UA extraction significantly increased the total phenolic content (2.90 GAE ㎍/mg, p < 0.05), without affecting the flavonoid content. DPPH radical scavenging activity did not exhibit any statistical difference among the extracts. The ethanol and UA extracts exhibited significantly higher FRAP than the water extract (p < 0.05). The macamide B content of ethanol and UA extracts were 0.087 and 0.083 ㎍/mg, respectively. The water and UA extracts exhibited higher C2C12 muscle cell viability than the ethanol extract, and both extracts resulted in a significantly lower CK level than the H2O2-treated control group. This research suggests that the maca extract can protect muscle cells and serve as an antifatigue agent under oxidative stress conditions.